Loading…

Hierarchical online streaming feature selection based on adaptive ReliefF

In hierarchical classification learning, the feature space of data has high dimensionality, and the feature space is unknown with emerging features. To solve the above problems, we proposes an online streaming feature selection algorithm for hierarchical classification based on the adaptive ReliefF....

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Chenxi, Ren, Mengli, E, Chen, Yu, Xiehua, Lin, Yaojin, Li, Shaozi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 617
container_issue
container_start_page 613
container_title
container_volume
creator Wang, Chenxi
Ren, Mengli
E, Chen
Yu, Xiehua
Lin, Yaojin
Li, Shaozi
description In hierarchical classification learning, the feature space of data has high dimensionality, and the feature space is unknown with emerging features. To solve the above problems, we proposes an online streaming feature selection algorithm for hierarchical classification based on the adaptive ReliefF. Firstly, the ReliefF is adaptively improved by using the density information of instances around the sample, making it unnecessary to pre-specify parameters. Secondly, the hierarchical relationship between classes is integrated into the algorithm, and a new method for calculating the feature weight of hierarchical data is defined. Then, a feature online importance analysis method is designed based on feature weight. Finally, the adaptive ReliefF algorithm is improved based on feature redundancy, and the feature weight is scaled by the correlation between the features to achieve dynamic feature redundancy update. A large number of experiments verify the effectiveness of the proposed algorithm.
doi_str_mv 10.1109/ITME56794.2022.00131
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10086273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10086273</ieee_id><sourcerecordid>10086273</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-10dff331124647ac20253c0b4e8eca0f4317b7bc235fc231af2db637176feb4a3</originalsourceid><addsrcrecordid>eNotjtFKw0AQRVdBsNT8QR_yA4kzO5vd5FFKawMtgtTnMtnM6kqaliQK_r0BfbkHLofLVWqFkCNC9VgfD5vCusrkGrTOAZDwRiWVq0oqgBCwoFu10MaZjEpd3qtkHD9h9qwGq-1C1bsoAw_-I3ru0kvfxV7ScRqEz7F_T4Pw9DXMjXTip3jp04ZHaWcx5ZavU_yW9FW6KGH7oO4Cd6Mk_1yqt-3muN5l-5fnev20zyJiNWUIbQhEiNpY49jPxwvy0BgpxTMEQ-ga13hNRZgDOei2seTQ2SCNYVqq1d9uFJHTdYhnHn5OCFBa7Yh-AbevTmI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hierarchical online streaming feature selection based on adaptive ReliefF</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Chenxi ; Ren, Mengli ; E, Chen ; Yu, Xiehua ; Lin, Yaojin ; Li, Shaozi</creator><creatorcontrib>Wang, Chenxi ; Ren, Mengli ; E, Chen ; Yu, Xiehua ; Lin, Yaojin ; Li, Shaozi</creatorcontrib><description>In hierarchical classification learning, the feature space of data has high dimensionality, and the feature space is unknown with emerging features. To solve the above problems, we proposes an online streaming feature selection algorithm for hierarchical classification based on the adaptive ReliefF. Firstly, the ReliefF is adaptively improved by using the density information of instances around the sample, making it unnecessary to pre-specify parameters. Secondly, the hierarchical relationship between classes is integrated into the algorithm, and a new method for calculating the feature weight of hierarchical data is defined. Then, a feature online importance analysis method is designed based on feature weight. Finally, the adaptive ReliefF algorithm is improved based on feature redundancy, and the feature weight is scaled by the correlation between the features to achieve dynamic feature redundancy update. A large number of experiments verify the effectiveness of the proposed algorithm.</description><identifier>EISSN: 2474-3828</identifier><identifier>EISBN: 9798350310153</identifier><identifier>DOI: 10.1109/ITME56794.2022.00131</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>adaptive ReliefF algorithm ; Classification algorithms ; Correlation ; Education ; Feature extraction ; feature selection ; Heuristic algorithms ; hierarchical classification ; Information technology ; online feature selection ; Redundancy ; weight scaling</subject><ispartof>2022 12th International Conference on Information Technology in Medicine and Education (ITME)v, 2022, p.613-617</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10086273$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10086273$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Chenxi</creatorcontrib><creatorcontrib>Ren, Mengli</creatorcontrib><creatorcontrib>E, Chen</creatorcontrib><creatorcontrib>Yu, Xiehua</creatorcontrib><creatorcontrib>Lin, Yaojin</creatorcontrib><creatorcontrib>Li, Shaozi</creatorcontrib><title>Hierarchical online streaming feature selection based on adaptive ReliefF</title><title>2022 12th International Conference on Information Technology in Medicine and Education (ITME)v</title><addtitle>ITME</addtitle><description>In hierarchical classification learning, the feature space of data has high dimensionality, and the feature space is unknown with emerging features. To solve the above problems, we proposes an online streaming feature selection algorithm for hierarchical classification based on the adaptive ReliefF. Firstly, the ReliefF is adaptively improved by using the density information of instances around the sample, making it unnecessary to pre-specify parameters. Secondly, the hierarchical relationship between classes is integrated into the algorithm, and a new method for calculating the feature weight of hierarchical data is defined. Then, a feature online importance analysis method is designed based on feature weight. Finally, the adaptive ReliefF algorithm is improved based on feature redundancy, and the feature weight is scaled by the correlation between the features to achieve dynamic feature redundancy update. A large number of experiments verify the effectiveness of the proposed algorithm.</description><subject>adaptive ReliefF algorithm</subject><subject>Classification algorithms</subject><subject>Correlation</subject><subject>Education</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Heuristic algorithms</subject><subject>hierarchical classification</subject><subject>Information technology</subject><subject>online feature selection</subject><subject>Redundancy</subject><subject>weight scaling</subject><issn>2474-3828</issn><isbn>9798350310153</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjtFKw0AQRVdBsNT8QR_yA4kzO5vd5FFKawMtgtTnMtnM6kqaliQK_r0BfbkHLofLVWqFkCNC9VgfD5vCusrkGrTOAZDwRiWVq0oqgBCwoFu10MaZjEpd3qtkHD9h9qwGq-1C1bsoAw_-I3ru0kvfxV7ScRqEz7F_T4Pw9DXMjXTip3jp04ZHaWcx5ZavU_yW9FW6KGH7oO4Cd6Mk_1yqt-3muN5l-5fnev20zyJiNWUIbQhEiNpY49jPxwvy0BgpxTMEQ-ga13hNRZgDOei2seTQ2SCNYVqq1d9uFJHTdYhnHn5OCFBa7Yh-AbevTmI</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Wang, Chenxi</creator><creator>Ren, Mengli</creator><creator>E, Chen</creator><creator>Yu, Xiehua</creator><creator>Lin, Yaojin</creator><creator>Li, Shaozi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202211</creationdate><title>Hierarchical online streaming feature selection based on adaptive ReliefF</title><author>Wang, Chenxi ; Ren, Mengli ; E, Chen ; Yu, Xiehua ; Lin, Yaojin ; Li, Shaozi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-10dff331124647ac20253c0b4e8eca0f4317b7bc235fc231af2db637176feb4a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>adaptive ReliefF algorithm</topic><topic>Classification algorithms</topic><topic>Correlation</topic><topic>Education</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Heuristic algorithms</topic><topic>hierarchical classification</topic><topic>Information technology</topic><topic>online feature selection</topic><topic>Redundancy</topic><topic>weight scaling</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chenxi</creatorcontrib><creatorcontrib>Ren, Mengli</creatorcontrib><creatorcontrib>E, Chen</creatorcontrib><creatorcontrib>Yu, Xiehua</creatorcontrib><creatorcontrib>Lin, Yaojin</creatorcontrib><creatorcontrib>Li, Shaozi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Chenxi</au><au>Ren, Mengli</au><au>E, Chen</au><au>Yu, Xiehua</au><au>Lin, Yaojin</au><au>Li, Shaozi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hierarchical online streaming feature selection based on adaptive ReliefF</atitle><btitle>2022 12th International Conference on Information Technology in Medicine and Education (ITME)v</btitle><stitle>ITME</stitle><date>2022-11</date><risdate>2022</risdate><spage>613</spage><epage>617</epage><pages>613-617</pages><eissn>2474-3828</eissn><eisbn>9798350310153</eisbn><coden>IEEPAD</coden><abstract>In hierarchical classification learning, the feature space of data has high dimensionality, and the feature space is unknown with emerging features. To solve the above problems, we proposes an online streaming feature selection algorithm for hierarchical classification based on the adaptive ReliefF. Firstly, the ReliefF is adaptively improved by using the density information of instances around the sample, making it unnecessary to pre-specify parameters. Secondly, the hierarchical relationship between classes is integrated into the algorithm, and a new method for calculating the feature weight of hierarchical data is defined. Then, a feature online importance analysis method is designed based on feature weight. Finally, the adaptive ReliefF algorithm is improved based on feature redundancy, and the feature weight is scaled by the correlation between the features to achieve dynamic feature redundancy update. A large number of experiments verify the effectiveness of the proposed algorithm.</abstract><pub>IEEE</pub><doi>10.1109/ITME56794.2022.00131</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2474-3828
ispartof 2022 12th International Conference on Information Technology in Medicine and Education (ITME)v, 2022, p.613-617
issn 2474-3828
language eng
recordid cdi_ieee_primary_10086273
source IEEE Xplore All Conference Series
subjects adaptive ReliefF algorithm
Classification algorithms
Correlation
Education
Feature extraction
feature selection
Heuristic algorithms
hierarchical classification
Information technology
online feature selection
Redundancy
weight scaling
title Hierarchical online streaming feature selection based on adaptive ReliefF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hierarchical%20online%20streaming%20feature%20selection%20based%20on%20adaptive%20ReliefF&rft.btitle=2022%2012th%20International%20Conference%20on%20Information%20Technology%20in%20Medicine%20and%20Education%20(ITME)v&rft.au=Wang,%20Chenxi&rft.date=2022-11&rft.spage=613&rft.epage=617&rft.pages=613-617&rft.eissn=2474-3828&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ITME56794.2022.00131&rft.eisbn=9798350310153&rft_dat=%3Cieee_CHZPO%3E10086273%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-10dff331124647ac20253c0b4e8eca0f4317b7bc235fc231af2db637176feb4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10086273&rfr_iscdi=true