Loading…
Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network
The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 5 |
creator | Ovseenko, Galina A. Kashaev, Rustem S. Kozelkov, Oleg V. Filimonova, Tamara K. Evdokimova, Tatyana S. Mardanova, Aliya M. |
description | The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology. |
doi_str_mv | 10.1109/REEPE57272.2023.10086740 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10086740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10086740</ieee_id><sourcerecordid>10086740</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-8f4a9b96c5d33797f1e49ed416e1e5e3a3b7660caa60ee31abba7617c793746e3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURA0SElXJH7DwD6TYvokdL1EVoFIlEIJ1dZPegCGJI8ct7d8THl2NRmd0FsMYl2IhpbA3z2X5VOZGGbVQQsFCClFok4kzllhjC8gFWJsrOGczVYBMjdLqkiXj-CGEACUyae2MHVfdEPze9W88vhN3feNDh9H5nu8pYO3ikfvml9W-G1o6_NRu10Y3YMCOYnD1hPoYfHtaBmrx4CdGgVc40pZPOuQ97QK2U8QvHz6v2EWD7UjJf87Z6135snxI14_3q-XtOnVS2pgWTYa2srrOtwDGmkZSZmmbSU2ScgKEymgtakQtiEBiVaHR0tTGgsk0wZxd_3kdEW2G4DoMx83pLfgGneNiJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</title><source>IEEE Xplore All Conference Series</source><creator>Ovseenko, Galina A. ; Kashaev, Rustem S. ; Kozelkov, Oleg V. ; Filimonova, Tamara K. ; Evdokimova, Tatyana S. ; Mardanova, Aliya M.</creator><creatorcontrib>Ovseenko, Galina A. ; Kashaev, Rustem S. ; Kozelkov, Oleg V. ; Filimonova, Tamara K. ; Evdokimova, Tatyana S. ; Mardanova, Aliya M.</creatorcontrib><description>The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.</description><identifier>EISSN: 2831-7262</identifier><identifier>EISBN: 9798350399523</identifier><identifier>DOI: 10.1109/REEPE57272.2023.10086740</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; control ; Magnetic resonance ; neural network ; parameters ; proton ; Protons ; relaxometry ; Sociology ; Software ; Software algorithms ; Training</subject><ispartof>2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2023, Vol.5, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10086740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10086740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ovseenko, Galina A.</creatorcontrib><creatorcontrib>Kashaev, Rustem S.</creatorcontrib><creatorcontrib>Kozelkov, Oleg V.</creatorcontrib><creatorcontrib>Filimonova, Tamara K.</creatorcontrib><creatorcontrib>Evdokimova, Tatyana S.</creatorcontrib><creatorcontrib>Mardanova, Aliya M.</creatorcontrib><title>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</title><title>2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)</title><addtitle>REEPE</addtitle><description>The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.</description><subject>Artificial neural networks</subject><subject>control</subject><subject>Magnetic resonance</subject><subject>neural network</subject><subject>parameters</subject><subject>proton</subject><subject>Protons</subject><subject>relaxometry</subject><subject>Sociology</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Training</subject><issn>2831-7262</issn><isbn>9798350399523</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURA0SElXJH7DwD6TYvokdL1EVoFIlEIJ1dZPegCGJI8ct7d8THl2NRmd0FsMYl2IhpbA3z2X5VOZGGbVQQsFCClFok4kzllhjC8gFWJsrOGczVYBMjdLqkiXj-CGEACUyae2MHVfdEPze9W88vhN3feNDh9H5nu8pYO3ikfvml9W-G1o6_NRu10Y3YMCOYnD1hPoYfHtaBmrx4CdGgVc40pZPOuQ97QK2U8QvHz6v2EWD7UjJf87Z6135snxI14_3q-XtOnVS2pgWTYa2srrOtwDGmkZSZmmbSU2ScgKEymgtakQtiEBiVaHR0tTGgsk0wZxd_3kdEW2G4DoMx83pLfgGneNiJA</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Ovseenko, Galina A.</creator><creator>Kashaev, Rustem S.</creator><creator>Kozelkov, Oleg V.</creator><creator>Filimonova, Tamara K.</creator><creator>Evdokimova, Tatyana S.</creator><creator>Mardanova, Aliya M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230316</creationdate><title>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</title><author>Ovseenko, Galina A. ; Kashaev, Rustem S. ; Kozelkov, Oleg V. ; Filimonova, Tamara K. ; Evdokimova, Tatyana S. ; Mardanova, Aliya M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-8f4a9b96c5d33797f1e49ed416e1e5e3a3b7660caa60ee31abba7617c793746e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>control</topic><topic>Magnetic resonance</topic><topic>neural network</topic><topic>parameters</topic><topic>proton</topic><topic>Protons</topic><topic>relaxometry</topic><topic>Sociology</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ovseenko, Galina A.</creatorcontrib><creatorcontrib>Kashaev, Rustem S.</creatorcontrib><creatorcontrib>Kozelkov, Oleg V.</creatorcontrib><creatorcontrib>Filimonova, Tamara K.</creatorcontrib><creatorcontrib>Evdokimova, Tatyana S.</creatorcontrib><creatorcontrib>Mardanova, Aliya M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ovseenko, Galina A.</au><au>Kashaev, Rustem S.</au><au>Kozelkov, Oleg V.</au><au>Filimonova, Tamara K.</au><au>Evdokimova, Tatyana S.</au><au>Mardanova, Aliya M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</atitle><btitle>2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)</btitle><stitle>REEPE</stitle><date>2023-03-16</date><risdate>2023</risdate><volume>5</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2831-7262</eissn><eisbn>9798350399523</eisbn><abstract>The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.</abstract><pub>IEEE</pub><doi>10.1109/REEPE57272.2023.10086740</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2831-7262 |
ispartof | 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2023, Vol.5, p.1-5 |
issn | 2831-7262 |
language | eng |
recordid | cdi_ieee_primary_10086740 |
source | IEEE Xplore All Conference Series |
subjects | Artificial neural networks control Magnetic resonance neural network parameters proton Protons relaxometry Sociology Software Software algorithms Training |
title | Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20information%20veracity%20of%20the%20complex%20of%20multiparametric%20control%20of%20the%20relaxometer%20based%20on%20a%20neural%20network&rft.btitle=2023%205th%20International%20Youth%20Conference%20on%20Radio%20Electronics,%20Electrical%20and%20Power%20Engineering%20(REEPE)&rft.au=Ovseenko,%20Galina%20A.&rft.date=2023-03-16&rft.volume=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2831-7262&rft_id=info:doi/10.1109/REEPE57272.2023.10086740&rft.eisbn=9798350399523&rft_dat=%3Cieee_CHZPO%3E10086740%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-8f4a9b96c5d33797f1e49ed416e1e5e3a3b7660caa60ee31abba7617c793746e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10086740&rfr_iscdi=true |