Loading…

Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network

The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica...

Full description

Saved in:
Bibliographic Details
Main Authors: Ovseenko, Galina A., Kashaev, Rustem S., Kozelkov, Oleg V., Filimonova, Tamara K., Evdokimova, Tatyana S., Mardanova, Aliya M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume 5
creator Ovseenko, Galina A.
Kashaev, Rustem S.
Kozelkov, Oleg V.
Filimonova, Tamara K.
Evdokimova, Tatyana S.
Mardanova, Aliya M.
description The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.
doi_str_mv 10.1109/REEPE57272.2023.10086740
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10086740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10086740</ieee_id><sourcerecordid>10086740</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-8f4a9b96c5d33797f1e49ed416e1e5e3a3b7660caa60ee31abba7617c793746e3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURA0SElXJH7DwD6TYvokdL1EVoFIlEIJ1dZPegCGJI8ct7d8THl2NRmd0FsMYl2IhpbA3z2X5VOZGGbVQQsFCClFok4kzllhjC8gFWJsrOGczVYBMjdLqkiXj-CGEACUyae2MHVfdEPze9W88vhN3feNDh9H5nu8pYO3ikfvml9W-G1o6_NRu10Y3YMCOYnD1hPoYfHtaBmrx4CdGgVc40pZPOuQ97QK2U8QvHz6v2EWD7UjJf87Z6135snxI14_3q-XtOnVS2pgWTYa2srrOtwDGmkZSZmmbSU2ScgKEymgtakQtiEBiVaHR0tTGgsk0wZxd_3kdEW2G4DoMx83pLfgGneNiJA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</title><source>IEEE Xplore All Conference Series</source><creator>Ovseenko, Galina A. ; Kashaev, Rustem S. ; Kozelkov, Oleg V. ; Filimonova, Tamara K. ; Evdokimova, Tatyana S. ; Mardanova, Aliya M.</creator><creatorcontrib>Ovseenko, Galina A. ; Kashaev, Rustem S. ; Kozelkov, Oleg V. ; Filimonova, Tamara K. ; Evdokimova, Tatyana S. ; Mardanova, Aliya M.</creatorcontrib><description>The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.</description><identifier>EISSN: 2831-7262</identifier><identifier>EISBN: 9798350399523</identifier><identifier>DOI: 10.1109/REEPE57272.2023.10086740</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; control ; Magnetic resonance ; neural network ; parameters ; proton ; Protons ; relaxometry ; Sociology ; Software ; Software algorithms ; Training</subject><ispartof>2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2023, Vol.5, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10086740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10086740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ovseenko, Galina A.</creatorcontrib><creatorcontrib>Kashaev, Rustem S.</creatorcontrib><creatorcontrib>Kozelkov, Oleg V.</creatorcontrib><creatorcontrib>Filimonova, Tamara K.</creatorcontrib><creatorcontrib>Evdokimova, Tatyana S.</creatorcontrib><creatorcontrib>Mardanova, Aliya M.</creatorcontrib><title>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</title><title>2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)</title><addtitle>REEPE</addtitle><description>The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.</description><subject>Artificial neural networks</subject><subject>control</subject><subject>Magnetic resonance</subject><subject>neural network</subject><subject>parameters</subject><subject>proton</subject><subject>Protons</subject><subject>relaxometry</subject><subject>Sociology</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Training</subject><issn>2831-7262</issn><isbn>9798350399523</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURA0SElXJH7DwD6TYvokdL1EVoFIlEIJ1dZPegCGJI8ct7d8THl2NRmd0FsMYl2IhpbA3z2X5VOZGGbVQQsFCClFok4kzllhjC8gFWJsrOGczVYBMjdLqkiXj-CGEACUyae2MHVfdEPze9W88vhN3feNDh9H5nu8pYO3ikfvml9W-G1o6_NRu10Y3YMCOYnD1hPoYfHtaBmrx4CdGgVc40pZPOuQ97QK2U8QvHz6v2EWD7UjJf87Z6135snxI14_3q-XtOnVS2pgWTYa2srrOtwDGmkZSZmmbSU2ScgKEymgtakQtiEBiVaHR0tTGgsk0wZxd_3kdEW2G4DoMx83pLfgGneNiJA</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>Ovseenko, Galina A.</creator><creator>Kashaev, Rustem S.</creator><creator>Kozelkov, Oleg V.</creator><creator>Filimonova, Tamara K.</creator><creator>Evdokimova, Tatyana S.</creator><creator>Mardanova, Aliya M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230316</creationdate><title>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</title><author>Ovseenko, Galina A. ; Kashaev, Rustem S. ; Kozelkov, Oleg V. ; Filimonova, Tamara K. ; Evdokimova, Tatyana S. ; Mardanova, Aliya M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-8f4a9b96c5d33797f1e49ed416e1e5e3a3b7660caa60ee31abba7617c793746e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>control</topic><topic>Magnetic resonance</topic><topic>neural network</topic><topic>parameters</topic><topic>proton</topic><topic>Protons</topic><topic>relaxometry</topic><topic>Sociology</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ovseenko, Galina A.</creatorcontrib><creatorcontrib>Kashaev, Rustem S.</creatorcontrib><creatorcontrib>Kozelkov, Oleg V.</creatorcontrib><creatorcontrib>Filimonova, Tamara K.</creatorcontrib><creatorcontrib>Evdokimova, Tatyana S.</creatorcontrib><creatorcontrib>Mardanova, Aliya M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ovseenko, Galina A.</au><au>Kashaev, Rustem S.</au><au>Kozelkov, Oleg V.</au><au>Filimonova, Tamara K.</au><au>Evdokimova, Tatyana S.</au><au>Mardanova, Aliya M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network</atitle><btitle>2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)</btitle><stitle>REEPE</stitle><date>2023-03-16</date><risdate>2023</risdate><volume>5</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2831-7262</eissn><eisbn>9798350399523</eisbn><abstract>The article deals with studies of measurements of physico-chemical characteristics by a proton magnetic resonance relaxometer by methods of veracity control and operation control. The choice of the neural network structure is justified, the algorithm of training the neural network in the Statistica 10 mathematical package is described according to the following parameters: spin-spin relaxation times, proton population and amplitude of spin-echo signals, which carry out a multiparametric analysis of fluid characteristics in digital intelligent deposits. This article solves the problem of increasing the information veracity of the complex of multiparametric control of the proton magnetic resonance relaxometer as part of the device-software package by developing and applying methods, algorithms and software based on them to evaluate the operating modes of the nodes of the complex of multiparametric control based on the use of artificial neural network technology.</abstract><pub>IEEE</pub><doi>10.1109/REEPE57272.2023.10086740</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2831-7262
ispartof 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2023, Vol.5, p.1-5
issn 2831-7262
language eng
recordid cdi_ieee_primary_10086740
source IEEE Xplore All Conference Series
subjects Artificial neural networks
control
Magnetic resonance
neural network
parameters
proton
Protons
relaxometry
Sociology
Software
Software algorithms
Training
title Improving the information veracity of the complex of multiparametric control of the relaxometer based on a neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20information%20veracity%20of%20the%20complex%20of%20multiparametric%20control%20of%20the%20relaxometer%20based%20on%20a%20neural%20network&rft.btitle=2023%205th%20International%20Youth%20Conference%20on%20Radio%20Electronics,%20Electrical%20and%20Power%20Engineering%20(REEPE)&rft.au=Ovseenko,%20Galina%20A.&rft.date=2023-03-16&rft.volume=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2831-7262&rft_id=info:doi/10.1109/REEPE57272.2023.10086740&rft.eisbn=9798350399523&rft_dat=%3Cieee_CHZPO%3E10086740%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-8f4a9b96c5d33797f1e49ed416e1e5e3a3b7660caa60ee31abba7617c793746e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10086740&rfr_iscdi=true