Loading…

A Distributed Dynamic Framework to Allocate Collaborative Tasks Based on Capability Matching in Heterogeneous Multirobot Systems

Collaboration among a group of robots with heterogeneous capabilities is an important research problem that enables to combine different robot functionalities, and thus, conducts complex tasks that may be difficult to achieve by a single robot with limited resources. In this article, we propose a ne...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cognitive and developmental systems 2024-02, Vol.16 (1), p.251-265
Main Authors: Lee, Hoi-Yin, Zhou, Peng, Zhang, Bin, Qiu, Liuming, Fan, Bowen, Duan, Anqing, Tang, Jingtao, Lam, Tin Lun, Navarro-Alarcon, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c246t-bad7d67328d922d0a9c7a71a5eb6d46250700c90b571821da8f5f5ad064bb6bb3
container_end_page 265
container_issue 1
container_start_page 251
container_title IEEE transactions on cognitive and developmental systems
container_volume 16
creator Lee, Hoi-Yin
Zhou, Peng
Zhang, Bin
Qiu, Liuming
Fan, Bowen
Duan, Anqing
Tang, Jingtao
Lam, Tin Lun
Navarro-Alarcon, David
description Collaboration among a group of robots with heterogeneous capabilities is an important research problem that enables to combine different robot functionalities, and thus, conducts complex tasks that may be difficult to achieve by a single robot with limited resources. In this article, we propose a new distributed task allocation framework based on the capability matching of heterogeneous robots. The framework is composed of an ontological dynamic knowledge graph model and a hardware control scheme to model the capability and optimize resource utilization for collaborative tasks. We introduce an intuitive hardware control scheme based on a dynamic knowledge graph that resolves possible conflicts between the hardware control of different types of robots. Action sequences are produced by a task and motion planning algorithm to collaboratively perform the assigned task. The performance of the proposed methodology is evaluated by both simulations and hardware experiments.
doi_str_mv 10.1109/TCDS.2023.3264034
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10090431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10090431</ieee_id><sourcerecordid>2921290759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-bad7d67328d922d0a9c7a71a5eb6d46250700c90b571821da8f5f5ad064bb6bb3</originalsourceid><addsrcrecordid>eNpNkEFPwjAUgBejiQT5ASYemngGX9ttXY84REwgHsDz8roVLIwV207DzZ_uCMZ4eu_wfe8lXxTdUhhRCvJhlU-WIwaMjzhLY-DxRdRjXMhhJrm8_NsZXEcD77cAQFMuslj0ou8xmRgfnFFt0BWZHBvcm5JMHe71l3U7EiwZ17UtMWiS27pGZR0G86nJCv3Ok0f0nWcbkuMBlalNOJIFhvLdNBtiGjLTQTu70Y22rSeLtg7GWWUDWR590Ht_E12tsfZ68Dv70dv0aZXPhvPX55d8PB-WLE7DUGElqlRwllWSsQpQlgIFxUSrtIpTloAAKCWoRNCM0QqzdbJOsII0VipVivej-_Pdg7Mfrfah2NrWNd3LgklGmQSRyI6iZ6p01nun18XBmT26Y0GhOLUuTq2LU-vit3Xn3J0do7X-x4OEmFP-Aw92fFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921290759</pqid></control><display><type>article</type><title>A Distributed Dynamic Framework to Allocate Collaborative Tasks Based on Capability Matching in Heterogeneous Multirobot Systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lee, Hoi-Yin ; Zhou, Peng ; Zhang, Bin ; Qiu, Liuming ; Fan, Bowen ; Duan, Anqing ; Tang, Jingtao ; Lam, Tin Lun ; Navarro-Alarcon, David</creator><creatorcontrib>Lee, Hoi-Yin ; Zhou, Peng ; Zhang, Bin ; Qiu, Liuming ; Fan, Bowen ; Duan, Anqing ; Tang, Jingtao ; Lam, Tin Lun ; Navarro-Alarcon, David</creatorcontrib><description>Collaboration among a group of robots with heterogeneous capabilities is an important research problem that enables to combine different robot functionalities, and thus, conducts complex tasks that may be difficult to achieve by a single robot with limited resources. In this article, we propose a new distributed task allocation framework based on the capability matching of heterogeneous robots. The framework is composed of an ontological dynamic knowledge graph model and a hardware control scheme to model the capability and optimize resource utilization for collaborative tasks. We introduce an intuitive hardware control scheme based on a dynamic knowledge graph that resolves possible conflicts between the hardware control of different types of robots. Action sequences are produced by a task and motion planning algorithm to collaboratively perform the assigned task. The performance of the proposed methodology is evaluated by both simulations and hardware experiments.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2023.3264034</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Capability modeling ; cognitive systems ; Collaboration ; Hardware ; Knowledge representation ; Matching ; Motion planning ; multi-robot systems (MRSs) ; Multiple robots ; resource allocation ; Resource management ; Resource utilization ; Robot kinematics ; Robot sensing systems ; Robots ; task allocation ; Task analysis ; Task complexity</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2024-02, Vol.16 (1), p.251-265</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-bad7d67328d922d0a9c7a71a5eb6d46250700c90b571821da8f5f5ad064bb6bb3</cites><orcidid>0000-0001-6860-1951 ; 0000-0002-6363-1446 ; 0000-0002-7020-0943 ; 0000-0003-0326-6931 ; 0000-0002-4828-9021 ; 0000-0003-0368-2257 ; 0009-0003-8806-2942 ; 0000-0002-3426-6638 ; 0000-0002-9666-018X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10090431$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Lee, Hoi-Yin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Qiu, Liuming</creatorcontrib><creatorcontrib>Fan, Bowen</creatorcontrib><creatorcontrib>Duan, Anqing</creatorcontrib><creatorcontrib>Tang, Jingtao</creatorcontrib><creatorcontrib>Lam, Tin Lun</creatorcontrib><creatorcontrib>Navarro-Alarcon, David</creatorcontrib><title>A Distributed Dynamic Framework to Allocate Collaborative Tasks Based on Capability Matching in Heterogeneous Multirobot Systems</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>Collaboration among a group of robots with heterogeneous capabilities is an important research problem that enables to combine different robot functionalities, and thus, conducts complex tasks that may be difficult to achieve by a single robot with limited resources. In this article, we propose a new distributed task allocation framework based on the capability matching of heterogeneous robots. The framework is composed of an ontological dynamic knowledge graph model and a hardware control scheme to model the capability and optimize resource utilization for collaborative tasks. We introduce an intuitive hardware control scheme based on a dynamic knowledge graph that resolves possible conflicts between the hardware control of different types of robots. Action sequences are produced by a task and motion planning algorithm to collaboratively perform the assigned task. The performance of the proposed methodology is evaluated by both simulations and hardware experiments.</description><subject>Algorithms</subject><subject>Capability modeling</subject><subject>cognitive systems</subject><subject>Collaboration</subject><subject>Hardware</subject><subject>Knowledge representation</subject><subject>Matching</subject><subject>Motion planning</subject><subject>multi-robot systems (MRSs)</subject><subject>Multiple robots</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>task allocation</subject><subject>Task analysis</subject><subject>Task complexity</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEFPwjAUgBejiQT5ASYemngGX9ttXY84REwgHsDz8roVLIwV207DzZ_uCMZ4eu_wfe8lXxTdUhhRCvJhlU-WIwaMjzhLY-DxRdRjXMhhJrm8_NsZXEcD77cAQFMuslj0ou8xmRgfnFFt0BWZHBvcm5JMHe71l3U7EiwZ17UtMWiS27pGZR0G86nJCv3Ok0f0nWcbkuMBlalNOJIFhvLdNBtiGjLTQTu70Y22rSeLtg7GWWUDWR590Ht_E12tsfZ68Dv70dv0aZXPhvPX55d8PB-WLE7DUGElqlRwllWSsQpQlgIFxUSrtIpTloAAKCWoRNCM0QqzdbJOsII0VipVivej-_Pdg7Mfrfah2NrWNd3LgklGmQSRyI6iZ6p01nun18XBmT26Y0GhOLUuTq2LU-vit3Xn3J0do7X-x4OEmFP-Aw92fFw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lee, Hoi-Yin</creator><creator>Zhou, Peng</creator><creator>Zhang, Bin</creator><creator>Qiu, Liuming</creator><creator>Fan, Bowen</creator><creator>Duan, Anqing</creator><creator>Tang, Jingtao</creator><creator>Lam, Tin Lun</creator><creator>Navarro-Alarcon, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6860-1951</orcidid><orcidid>https://orcid.org/0000-0002-6363-1446</orcidid><orcidid>https://orcid.org/0000-0002-7020-0943</orcidid><orcidid>https://orcid.org/0000-0003-0326-6931</orcidid><orcidid>https://orcid.org/0000-0002-4828-9021</orcidid><orcidid>https://orcid.org/0000-0003-0368-2257</orcidid><orcidid>https://orcid.org/0009-0003-8806-2942</orcidid><orcidid>https://orcid.org/0000-0002-3426-6638</orcidid><orcidid>https://orcid.org/0000-0002-9666-018X</orcidid></search><sort><creationdate>20240201</creationdate><title>A Distributed Dynamic Framework to Allocate Collaborative Tasks Based on Capability Matching in Heterogeneous Multirobot Systems</title><author>Lee, Hoi-Yin ; Zhou, Peng ; Zhang, Bin ; Qiu, Liuming ; Fan, Bowen ; Duan, Anqing ; Tang, Jingtao ; Lam, Tin Lun ; Navarro-Alarcon, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-bad7d67328d922d0a9c7a71a5eb6d46250700c90b571821da8f5f5ad064bb6bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Capability modeling</topic><topic>cognitive systems</topic><topic>Collaboration</topic><topic>Hardware</topic><topic>Knowledge representation</topic><topic>Matching</topic><topic>Motion planning</topic><topic>multi-robot systems (MRSs)</topic><topic>Multiple robots</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>task allocation</topic><topic>Task analysis</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hoi-Yin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Qiu, Liuming</creatorcontrib><creatorcontrib>Fan, Bowen</creatorcontrib><creatorcontrib>Duan, Anqing</creatorcontrib><creatorcontrib>Tang, Jingtao</creatorcontrib><creatorcontrib>Lam, Tin Lun</creatorcontrib><creatorcontrib>Navarro-Alarcon, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hoi-Yin</au><au>Zhou, Peng</au><au>Zhang, Bin</au><au>Qiu, Liuming</au><au>Fan, Bowen</au><au>Duan, Anqing</au><au>Tang, Jingtao</au><au>Lam, Tin Lun</au><au>Navarro-Alarcon, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Distributed Dynamic Framework to Allocate Collaborative Tasks Based on Capability Matching in Heterogeneous Multirobot Systems</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>251</spage><epage>265</epage><pages>251-265</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>Collaboration among a group of robots with heterogeneous capabilities is an important research problem that enables to combine different robot functionalities, and thus, conducts complex tasks that may be difficult to achieve by a single robot with limited resources. In this article, we propose a new distributed task allocation framework based on the capability matching of heterogeneous robots. The framework is composed of an ontological dynamic knowledge graph model and a hardware control scheme to model the capability and optimize resource utilization for collaborative tasks. We introduce an intuitive hardware control scheme based on a dynamic knowledge graph that resolves possible conflicts between the hardware control of different types of robots. Action sequences are produced by a task and motion planning algorithm to collaboratively perform the assigned task. The performance of the proposed methodology is evaluated by both simulations and hardware experiments.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2023.3264034</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6860-1951</orcidid><orcidid>https://orcid.org/0000-0002-6363-1446</orcidid><orcidid>https://orcid.org/0000-0002-7020-0943</orcidid><orcidid>https://orcid.org/0000-0003-0326-6931</orcidid><orcidid>https://orcid.org/0000-0002-4828-9021</orcidid><orcidid>https://orcid.org/0000-0003-0368-2257</orcidid><orcidid>https://orcid.org/0009-0003-8806-2942</orcidid><orcidid>https://orcid.org/0000-0002-3426-6638</orcidid><orcidid>https://orcid.org/0000-0002-9666-018X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2024-02, Vol.16 (1), p.251-265
issn 2379-8920
2379-8939
language eng
recordid cdi_ieee_primary_10090431
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Capability modeling
cognitive systems
Collaboration
Hardware
Knowledge representation
Matching
Motion planning
multi-robot systems (MRSs)
Multiple robots
resource allocation
Resource management
Resource utilization
Robot kinematics
Robot sensing systems
Robots
task allocation
Task analysis
Task complexity
title A Distributed Dynamic Framework to Allocate Collaborative Tasks Based on Capability Matching in Heterogeneous Multirobot Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Distributed%20Dynamic%20Framework%20to%20Allocate%20Collaborative%20Tasks%20Based%20on%20Capability%20Matching%20in%20Heterogeneous%20Multirobot%20Systems&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Lee,%20Hoi-Yin&rft.date=2024-02-01&rft.volume=16&rft.issue=1&rft.spage=251&rft.epage=265&rft.pages=251-265&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2023.3264034&rft_dat=%3Cproquest_ieee_%3E2921290759%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-bad7d67328d922d0a9c7a71a5eb6d46250700c90b571821da8f5f5ad064bb6bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2921290759&rft_id=info:pmid/&rft_ieee_id=10090431&rfr_iscdi=true