Loading…

On the Feasibility of Self-Powered Linear Feedback Control

A control system is called self-powered if the only energy it requires for operation is that which it absorbs from the plant. For a linear feedback law to be feasible for a self-powered control system, its feedback signal must be colocated with the control inputs, and its input-output mapping must s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 2024-01, Vol.69 (1), p.113-128
Main Authors: Ligeikis, Connor H., Scruggs, Jeffrey T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c287t-adb952228a026351d8821e50054d2d08f79faae071724b36c2f156e934988dd43
container_end_page 128
container_issue 1
container_start_page 113
container_title IEEE transactions on automatic control
container_volume 69
creator Ligeikis, Connor H.
Scruggs, Jeffrey T.
description A control system is called self-powered if the only energy it requires for operation is that which it absorbs from the plant. For a linear feedback law to be feasible for a self-powered control system, its feedback signal must be colocated with the control inputs, and its input-output mapping must satisfy an associated passivity constraint. The imposition of such a feedback law can be viewed equivalently as the imposition of a linear passive shunt admittance at the actuation ports of the plant. In this article, we consider the use of actively-controlled electronics to impose a self-powered linear feedback law. To be feasible, it is insufficient that the imposed admittance be passive, because parasitic losses must additionally be overcome. We derive sufficient feasibility conditions, which explicitly account for these losses. In the finite-dimensional, time-invariant case, the feasibility condition distills to a more conservative version of the positive-real lemma, which is parametrized by various loss parameters. Three examples are given, in which this condition is used to determine the least-efficient loss parameters necessary to realize a desired feedback law.
doi_str_mv 10.1109/TAC.2023.3264706
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10093921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10093921</ieee_id><sourcerecordid>2907542985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-adb952228a026351d8821e50054d2d08f79faae071724b36c2f156e934988dd43</originalsourceid><addsrcrecordid>eNpNkMFLwzAUxoMoOKd3Dx4KnjtfXpI28TaKU2EwwXkOafOKnbWdSYfsv7djO3h6fPD7vgc_xm45zDgH87CeFzMEFDOBmcwhO2MTrpROUaE4ZxMArlODOrtkVzFuxphJySfscdUlwyclC3KxKZu2GfZJXyfv1NbpW_9LgXyybDpyYUTIl676Soq-G0LfXrOL2rWRbk53yj4WT-viJV2unl-L-TKtUOdD6nxpFCJqB5gJxb3WyEkBKOnRg65zUztHkPMcZSmyCmuuMjJCGq29l2LK7o-729D_7CgOdtPvQje-tGggVxKNViMFR6oKfYyBarsNzbcLe8vBHgzZ0ZA9GLInQ2Pl7lhpiOgfDkYY5OIPzLZe-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907542985</pqid></control><display><type>article</type><title>On the Feasibility of Self-Powered Linear Feedback Control</title><source>IEEE Xplore (Online service)</source><creator>Ligeikis, Connor H. ; Scruggs, Jeffrey T.</creator><creatorcontrib>Ligeikis, Connor H. ; Scruggs, Jeffrey T.</creatorcontrib><description>A control system is called self-powered if the only energy it requires for operation is that which it absorbs from the plant. For a linear feedback law to be feasible for a self-powered control system, its feedback signal must be colocated with the control inputs, and its input-output mapping must satisfy an associated passivity constraint. The imposition of such a feedback law can be viewed equivalently as the imposition of a linear passive shunt admittance at the actuation ports of the plant. In this article, we consider the use of actively-controlled electronics to impose a self-powered linear feedback law. To be feasible, it is insufficient that the imposed admittance be passive, because parasitic losses must additionally be overcome. We derive sufficient feasibility conditions, which explicitly account for these losses. In the finite-dimensional, time-invariant case, the feasibility condition distills to a more conservative version of the positive-real lemma, which is parametrized by various loss parameters. Three examples are given, in which this condition is used to determine the least-efficient loss parameters necessary to realize a desired feedback law.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2023.3264706</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Actuation ; Admittance ; Constrained control ; Control systems ; Electrical impedance ; energy systems ; Feasibility ; Feedback control ; linear feedback ; Linear feedback control systems ; Linear systems ; Network synthesis ; Parameters ; passivity</subject><ispartof>IEEE transactions on automatic control, 2024-01, Vol.69 (1), p.113-128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-adb952228a026351d8821e50054d2d08f79faae071724b36c2f156e934988dd43</cites><orcidid>0000-0002-0481-6133 ; 0000-0002-1560-6211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10093921$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Ligeikis, Connor H.</creatorcontrib><creatorcontrib>Scruggs, Jeffrey T.</creatorcontrib><title>On the Feasibility of Self-Powered Linear Feedback Control</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A control system is called self-powered if the only energy it requires for operation is that which it absorbs from the plant. For a linear feedback law to be feasible for a self-powered control system, its feedback signal must be colocated with the control inputs, and its input-output mapping must satisfy an associated passivity constraint. The imposition of such a feedback law can be viewed equivalently as the imposition of a linear passive shunt admittance at the actuation ports of the plant. In this article, we consider the use of actively-controlled electronics to impose a self-powered linear feedback law. To be feasible, it is insufficient that the imposed admittance be passive, because parasitic losses must additionally be overcome. We derive sufficient feasibility conditions, which explicitly account for these losses. In the finite-dimensional, time-invariant case, the feasibility condition distills to a more conservative version of the positive-real lemma, which is parametrized by various loss parameters. Three examples are given, in which this condition is used to determine the least-efficient loss parameters necessary to realize a desired feedback law.</description><subject>Actuation</subject><subject>Admittance</subject><subject>Constrained control</subject><subject>Control systems</subject><subject>Electrical impedance</subject><subject>energy systems</subject><subject>Feasibility</subject><subject>Feedback control</subject><subject>linear feedback</subject><subject>Linear feedback control systems</subject><subject>Linear systems</subject><subject>Network synthesis</subject><subject>Parameters</subject><subject>passivity</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAUxoMoOKd3Dx4KnjtfXpI28TaKU2EwwXkOafOKnbWdSYfsv7djO3h6fPD7vgc_xm45zDgH87CeFzMEFDOBmcwhO2MTrpROUaE4ZxMArlODOrtkVzFuxphJySfscdUlwyclC3KxKZu2GfZJXyfv1NbpW_9LgXyybDpyYUTIl676Soq-G0LfXrOL2rWRbk53yj4WT-viJV2unl-L-TKtUOdD6nxpFCJqB5gJxb3WyEkBKOnRg65zUztHkPMcZSmyCmuuMjJCGq29l2LK7o-729D_7CgOdtPvQje-tGggVxKNViMFR6oKfYyBarsNzbcLe8vBHgzZ0ZA9GLInQ2Pl7lhpiOgfDkYY5OIPzLZe-w</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Ligeikis, Connor H.</creator><creator>Scruggs, Jeffrey T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0481-6133</orcidid><orcidid>https://orcid.org/0000-0002-1560-6211</orcidid></search><sort><creationdate>202401</creationdate><title>On the Feasibility of Self-Powered Linear Feedback Control</title><author>Ligeikis, Connor H. ; Scruggs, Jeffrey T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-adb952228a026351d8821e50054d2d08f79faae071724b36c2f156e934988dd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actuation</topic><topic>Admittance</topic><topic>Constrained control</topic><topic>Control systems</topic><topic>Electrical impedance</topic><topic>energy systems</topic><topic>Feasibility</topic><topic>Feedback control</topic><topic>linear feedback</topic><topic>Linear feedback control systems</topic><topic>Linear systems</topic><topic>Network synthesis</topic><topic>Parameters</topic><topic>passivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ligeikis, Connor H.</creatorcontrib><creatorcontrib>Scruggs, Jeffrey T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ligeikis, Connor H.</au><au>Scruggs, Jeffrey T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Feasibility of Self-Powered Linear Feedback Control</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2024-01</date><risdate>2024</risdate><volume>69</volume><issue>1</issue><spage>113</spage><epage>128</epage><pages>113-128</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A control system is called self-powered if the only energy it requires for operation is that which it absorbs from the plant. For a linear feedback law to be feasible for a self-powered control system, its feedback signal must be colocated with the control inputs, and its input-output mapping must satisfy an associated passivity constraint. The imposition of such a feedback law can be viewed equivalently as the imposition of a linear passive shunt admittance at the actuation ports of the plant. In this article, we consider the use of actively-controlled electronics to impose a self-powered linear feedback law. To be feasible, it is insufficient that the imposed admittance be passive, because parasitic losses must additionally be overcome. We derive sufficient feasibility conditions, which explicitly account for these losses. In the finite-dimensional, time-invariant case, the feasibility condition distills to a more conservative version of the positive-real lemma, which is parametrized by various loss parameters. Three examples are given, in which this condition is used to determine the least-efficient loss parameters necessary to realize a desired feedback law.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2023.3264706</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0481-6133</orcidid><orcidid>https://orcid.org/0000-0002-1560-6211</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2024-01, Vol.69 (1), p.113-128
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_10093921
source IEEE Xplore (Online service)
subjects Actuation
Admittance
Constrained control
Control systems
Electrical impedance
energy systems
Feasibility
Feedback control
linear feedback
Linear feedback control systems
Linear systems
Network synthesis
Parameters
passivity
title On the Feasibility of Self-Powered Linear Feedback Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A09%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Feasibility%20of%20Self-Powered%20Linear%20Feedback%20Control&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Ligeikis,%20Connor%20H.&rft.date=2024-01&rft.volume=69&rft.issue=1&rft.spage=113&rft.epage=128&rft.pages=113-128&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2023.3264706&rft_dat=%3Cproquest_ieee_%3E2907542985%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-adb952228a026351d8821e50054d2d08f79faae071724b36c2f156e934988dd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2907542985&rft_id=info:pmid/&rft_ieee_id=10093921&rfr_iscdi=true