Loading…

Reducing the GAP Between Streaming and Non-Streaming Transducer-Based ASR by Adaptive Two-Stage Knowledge Distillation

Transducer is one of the mainstream frameworks for streaming speech recognition. There is a performance gap between the streaming and non-streaming transducer models due to limited context. To reduce this gap, an effective way is to ensure that their hidden and output distributions are consistent, w...

Full description

Saved in:
Bibliographic Details
Main Authors: Tang, Haitao, Fu, Yu, Sun, Lei, Xue, Jiabin, Liu, Dan, Li, Yongchao, Ma, Zhiqiang, Wu, Minghui, Pan, Jia, Wan, Genshun, Zhao, Ming'En
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Tang, Haitao
Fu, Yu
Sun, Lei
Xue, Jiabin
Liu, Dan
Li, Yongchao
Ma, Zhiqiang
Wu, Minghui
Pan, Jia
Wan, Genshun
Zhao, Ming'En
description Transducer is one of the mainstream frameworks for streaming speech recognition. There is a performance gap between the streaming and non-streaming transducer models due to limited context. To reduce this gap, an effective way is to ensure that their hidden and output distributions are consistent, which can be achieved by hierarchical knowledge distillation. However, it is difficult to ensure the distribution consistency simultaneously because the learning of the output distribution depends on the hidden one. In this paper, we propose an adaptive two-stage knowledge distillation method consisting of hidden layer learning and output layer learning. In the former stage, we learn hidden representation with full context by applying mean square error loss function. In the latter stage, we design a power transformation based adaptive smoothness method to learn stable output distribution. It achieved 19% relative reduction in word error rate, and a faster response for the first token compared with the original streaming model in LibriSpeech corpus.
doi_str_mv 10.1109/ICASSP49357.2023.10095040
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10095040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10095040</ieee_id><sourcerecordid>10095040</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1700-b04a36eca9b7cfa5be2b2c4d03ac52f03414f02733617708d0f3b3f7763c64cf3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQNEhItIU_4GA-IGX9SJwc0wIFUUHVFIlb5djrYpQ6VRJa9e8JAsRpRjOzK80Qcs1gzBhkN4_TvCgWMhOxGnPgYswAshgknJAhUzxlieBKnZIBFyqLWAZv52TYth8AkCqZDsh-ifbT-LCh3TvSWb6gE-wOiIEWXYN6--3oYOlzHaJ_ZdXo0PZ32EQT3aKlebGk5ZHmVu86v0e6OtR9XG-QPoX6UKHt2a1vO19VuvN1uCBnTlctXv7iiLze362mD9H8ZdZ3mkeeKYCoBKlFgkZnpTJOxyXykhtpQWgTcwdCMumAKyESphSkFpwohVMqESaRxokRufr56xFxvWv8VjfH9d9I4gtIBl2G</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reducing the GAP Between Streaming and Non-Streaming Transducer-Based ASR by Adaptive Two-Stage Knowledge Distillation</title><source>IEEE Xplore All Conference Series</source><creator>Tang, Haitao ; Fu, Yu ; Sun, Lei ; Xue, Jiabin ; Liu, Dan ; Li, Yongchao ; Ma, Zhiqiang ; Wu, Minghui ; Pan, Jia ; Wan, Genshun ; Zhao, Ming'En</creator><creatorcontrib>Tang, Haitao ; Fu, Yu ; Sun, Lei ; Xue, Jiabin ; Liu, Dan ; Li, Yongchao ; Ma, Zhiqiang ; Wu, Minghui ; Pan, Jia ; Wan, Genshun ; Zhao, Ming'En</creatorcontrib><description>Transducer is one of the mainstream frameworks for streaming speech recognition. There is a performance gap between the streaming and non-streaming transducer models due to limited context. To reduce this gap, an effective way is to ensure that their hidden and output distributions are consistent, which can be achieved by hierarchical knowledge distillation. However, it is difficult to ensure the distribution consistency simultaneously because the learning of the output distribution depends on the hidden one. In this paper, we propose an adaptive two-stage knowledge distillation method consisting of hidden layer learning and output layer learning. In the former stage, we learn hidden representation with full context by applying mean square error loss function. In the latter stage, we design a power transformation based adaptive smoothness method to learn stable output distribution. It achieved 19% relative reduction in word error rate, and a faster response for the first token compared with the original streaming model in LibriSpeech corpus.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1728163277</identifier><identifier>EISBN: 9781728163277</identifier><identifier>DOI: 10.1109/ICASSP49357.2023.10095040</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation models ; Conformer Transducer ; Error analysis ; Knowledge Distillation ; Mean square error methods ; Power Transformation ; Signal processing ; Speech recognition ; Temperature distribution ; Transducers</subject><ispartof>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10095040$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10095040$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Haitao</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Xue, Jiabin</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Li, Yongchao</creatorcontrib><creatorcontrib>Ma, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Minghui</creatorcontrib><creatorcontrib>Pan, Jia</creatorcontrib><creatorcontrib>Wan, Genshun</creatorcontrib><creatorcontrib>Zhao, Ming'En</creatorcontrib><title>Reducing the GAP Between Streaming and Non-Streaming Transducer-Based ASR by Adaptive Two-Stage Knowledge Distillation</title><title>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Transducer is one of the mainstream frameworks for streaming speech recognition. There is a performance gap between the streaming and non-streaming transducer models due to limited context. To reduce this gap, an effective way is to ensure that their hidden and output distributions are consistent, which can be achieved by hierarchical knowledge distillation. However, it is difficult to ensure the distribution consistency simultaneously because the learning of the output distribution depends on the hidden one. In this paper, we propose an adaptive two-stage knowledge distillation method consisting of hidden layer learning and output layer learning. In the former stage, we learn hidden representation with full context by applying mean square error loss function. In the latter stage, we design a power transformation based adaptive smoothness method to learn stable output distribution. It achieved 19% relative reduction in word error rate, and a faster response for the first token compared with the original streaming model in LibriSpeech corpus.</description><subject>Adaptation models</subject><subject>Conformer Transducer</subject><subject>Error analysis</subject><subject>Knowledge Distillation</subject><subject>Mean square error methods</subject><subject>Power Transformation</subject><subject>Signal processing</subject><subject>Speech recognition</subject><subject>Temperature distribution</subject><subject>Transducers</subject><issn>2379-190X</issn><isbn>1728163277</isbn><isbn>9781728163277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUMtOwzAQNEhItIU_4GA-IGX9SJwc0wIFUUHVFIlb5djrYpQ6VRJa9e8JAsRpRjOzK80Qcs1gzBhkN4_TvCgWMhOxGnPgYswAshgknJAhUzxlieBKnZIBFyqLWAZv52TYth8AkCqZDsh-ifbT-LCh3TvSWb6gE-wOiIEWXYN6--3oYOlzHaJ_ZdXo0PZ32EQT3aKlebGk5ZHmVu86v0e6OtR9XG-QPoX6UKHt2a1vO19VuvN1uCBnTlctXv7iiLze362mD9H8ZdZ3mkeeKYCoBKlFgkZnpTJOxyXykhtpQWgTcwdCMumAKyESphSkFpwohVMqESaRxokRufr56xFxvWv8VjfH9d9I4gtIBl2G</recordid><startdate>20230604</startdate><enddate>20230604</enddate><creator>Tang, Haitao</creator><creator>Fu, Yu</creator><creator>Sun, Lei</creator><creator>Xue, Jiabin</creator><creator>Liu, Dan</creator><creator>Li, Yongchao</creator><creator>Ma, Zhiqiang</creator><creator>Wu, Minghui</creator><creator>Pan, Jia</creator><creator>Wan, Genshun</creator><creator>Zhao, Ming'En</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230604</creationdate><title>Reducing the GAP Between Streaming and Non-Streaming Transducer-Based ASR by Adaptive Two-Stage Knowledge Distillation</title><author>Tang, Haitao ; Fu, Yu ; Sun, Lei ; Xue, Jiabin ; Liu, Dan ; Li, Yongchao ; Ma, Zhiqiang ; Wu, Minghui ; Pan, Jia ; Wan, Genshun ; Zhao, Ming'En</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1700-b04a36eca9b7cfa5be2b2c4d03ac52f03414f02733617708d0f3b3f7763c64cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Conformer Transducer</topic><topic>Error analysis</topic><topic>Knowledge Distillation</topic><topic>Mean square error methods</topic><topic>Power Transformation</topic><topic>Signal processing</topic><topic>Speech recognition</topic><topic>Temperature distribution</topic><topic>Transducers</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Haitao</creatorcontrib><creatorcontrib>Fu, Yu</creatorcontrib><creatorcontrib>Sun, Lei</creatorcontrib><creatorcontrib>Xue, Jiabin</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Li, Yongchao</creatorcontrib><creatorcontrib>Ma, Zhiqiang</creatorcontrib><creatorcontrib>Wu, Minghui</creatorcontrib><creatorcontrib>Pan, Jia</creatorcontrib><creatorcontrib>Wan, Genshun</creatorcontrib><creatorcontrib>Zhao, Ming'En</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Haitao</au><au>Fu, Yu</au><au>Sun, Lei</au><au>Xue, Jiabin</au><au>Liu, Dan</au><au>Li, Yongchao</au><au>Ma, Zhiqiang</au><au>Wu, Minghui</au><au>Pan, Jia</au><au>Wan, Genshun</au><au>Zhao, Ming'En</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reducing the GAP Between Streaming and Non-Streaming Transducer-Based ASR by Adaptive Two-Stage Knowledge Distillation</atitle><btitle>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2023-06-04</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2379-190X</eissn><eisbn>1728163277</eisbn><eisbn>9781728163277</eisbn><abstract>Transducer is one of the mainstream frameworks for streaming speech recognition. There is a performance gap between the streaming and non-streaming transducer models due to limited context. To reduce this gap, an effective way is to ensure that their hidden and output distributions are consistent, which can be achieved by hierarchical knowledge distillation. However, it is difficult to ensure the distribution consistency simultaneously because the learning of the output distribution depends on the hidden one. In this paper, we propose an adaptive two-stage knowledge distillation method consisting of hidden layer learning and output layer learning. In the former stage, we learn hidden representation with full context by applying mean square error loss function. In the latter stage, we design a power transformation based adaptive smoothness method to learn stable output distribution. It achieved 19% relative reduction in word error rate, and a faster response for the first token compared with the original streaming model in LibriSpeech corpus.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP49357.2023.10095040</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5
issn 2379-190X
language eng
recordid cdi_ieee_primary_10095040
source IEEE Xplore All Conference Series
subjects Adaptation models
Conformer Transducer
Error analysis
Knowledge Distillation
Mean square error methods
Power Transformation
Signal processing
Speech recognition
Temperature distribution
Transducers
title Reducing the GAP Between Streaming and Non-Streaming Transducer-Based ASR by Adaptive Two-Stage Knowledge Distillation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reducing%20the%20GAP%20Between%20Streaming%20and%20Non-Streaming%20Transducer-Based%20ASR%20by%20Adaptive%20Two-Stage%20Knowledge%20Distillation&rft.btitle=ICASSP%202023%20-%202023%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Tang,%20Haitao&rft.date=2023-06-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP49357.2023.10095040&rft.eisbn=1728163277&rft.eisbn_list=9781728163277&rft_dat=%3Cieee_CHZPO%3E10095040%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1700-b04a36eca9b7cfa5be2b2c4d03ac52f03414f02733617708d0f3b3f7763c64cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10095040&rfr_iscdi=true