Loading…
Contrastive Learning at the Relation and Event Level for Rumor Detection
Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Lea...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Xu, Yingrui Hu, Jingyuan Ge, Jingguo Wu, Yulei Li, Tong Li, Hui |
description | Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data. |
doi_str_mv | 10.1109/ICASSP49357.2023.10096567 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10096567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10096567</ieee_id><sourcerecordid>10096567</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-e8335d7203ec0393b183525590c28e4e8efce8ef15e9922d70df3594469768d73</originalsourceid><addsrcrecordid>eNo1j8FKw0AURUdBsK3-gYvxAxLfzMtk5i0lVisElFbBXRmTF42kE0nGgn9viro5d3O43CvEpYJUKaCr--J6s3nMCI1NNWhMFQDlJrdHYq6sdipHbe2xmGm0lCiCl1MxH8cPAHA2czOxKvoQBz_Gds-yZD-ENrxJH2V8Z7nmzse2D9KHWi73HOKk7LmTTT_I9ddu4g1Hrg7OmThpfDfy-V8uxPPt8qlYJeXD3bSyTFqlKCbsEE1tNSBXgISvyqHRxhBU2nHGjpvqAGWYSOvaQt2goSzLyeautrgQF7-9LTNvP4d254fv7f9t_AHud0zM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Contrastive Learning at the Relation and Event Level for Rumor Detection</title><source>IEEE Xplore All Conference Series</source><creator>Xu, Yingrui ; Hu, Jingyuan ; Ge, Jingguo ; Wu, Yulei ; Li, Tong ; Li, Hui</creator><creatorcontrib>Xu, Yingrui ; Hu, Jingyuan ; Ge, Jingguo ; Wu, Yulei ; Li, Tong ; Li, Hui</creatorcontrib><description>Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1728163277</identifier><identifier>EISBN: 9781728163277</identifier><identifier>DOI: 10.1109/ICASSP49357.2023.10096567</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Annotations ; contrastive learning ; Data models ; graph neural networks ; Manuals ; Rumor detection ; self-supervised learning ; Semantics ; Signal processing ; Task analysis</subject><ispartof>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10096567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10096567$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Yingrui</creatorcontrib><creatorcontrib>Hu, Jingyuan</creatorcontrib><creatorcontrib>Ge, Jingguo</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><title>Contrastive Learning at the Relation and Event Level for Rumor Detection</title><title>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.</description><subject>Acoustics</subject><subject>Annotations</subject><subject>contrastive learning</subject><subject>Data models</subject><subject>graph neural networks</subject><subject>Manuals</subject><subject>Rumor detection</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Signal processing</subject><subject>Task analysis</subject><issn>2379-190X</issn><isbn>1728163277</isbn><isbn>9781728163277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKw0AURUdBsK3-gYvxAxLfzMtk5i0lVisElFbBXRmTF42kE0nGgn9viro5d3O43CvEpYJUKaCr--J6s3nMCI1NNWhMFQDlJrdHYq6sdipHbe2xmGm0lCiCl1MxH8cPAHA2czOxKvoQBz_Gds-yZD-ENrxJH2V8Z7nmzse2D9KHWi73HOKk7LmTTT_I9ddu4g1Hrg7OmThpfDfy-V8uxPPt8qlYJeXD3bSyTFqlKCbsEE1tNSBXgISvyqHRxhBU2nHGjpvqAGWYSOvaQt2goSzLyeautrgQF7-9LTNvP4d254fv7f9t_AHud0zM</recordid><startdate>20230604</startdate><enddate>20230604</enddate><creator>Xu, Yingrui</creator><creator>Hu, Jingyuan</creator><creator>Ge, Jingguo</creator><creator>Wu, Yulei</creator><creator>Li, Tong</creator><creator>Li, Hui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230604</creationdate><title>Contrastive Learning at the Relation and Event Level for Rumor Detection</title><author>Xu, Yingrui ; Hu, Jingyuan ; Ge, Jingguo ; Wu, Yulei ; Li, Tong ; Li, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-e8335d7203ec0393b183525590c28e4e8efce8ef15e9922d70df3594469768d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Annotations</topic><topic>contrastive learning</topic><topic>Data models</topic><topic>graph neural networks</topic><topic>Manuals</topic><topic>Rumor detection</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Signal processing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yingrui</creatorcontrib><creatorcontrib>Hu, Jingyuan</creatorcontrib><creatorcontrib>Ge, Jingguo</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Yingrui</au><au>Hu, Jingyuan</au><au>Ge, Jingguo</au><au>Wu, Yulei</au><au>Li, Tong</au><au>Li, Hui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Contrastive Learning at the Relation and Event Level for Rumor Detection</atitle><btitle>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2023-06-04</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2379-190X</eissn><eisbn>1728163277</eisbn><eisbn>9781728163277</eisbn><abstract>Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP49357.2023.10096567</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_10096567 |
source | IEEE Xplore All Conference Series |
subjects | Acoustics Annotations contrastive learning Data models graph neural networks Manuals Rumor detection self-supervised learning Semantics Signal processing Task analysis |
title | Contrastive Learning at the Relation and Event Level for Rumor Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Contrastive%20Learning%20at%20the%20Relation%20and%20Event%20Level%20for%20Rumor%20Detection&rft.btitle=ICASSP%202023%20-%202023%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Xu,%20Yingrui&rft.date=2023-06-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP49357.2023.10096567&rft.eisbn=1728163277&rft.eisbn_list=9781728163277&rft_dat=%3Cieee_CHZPO%3E10096567%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-e8335d7203ec0393b183525590c28e4e8efce8ef15e9922d70df3594469768d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10096567&rfr_iscdi=true |