Loading…

Contrastive Learning at the Relation and Event Level for Rumor Detection

Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Lea...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Yingrui, Hu, Jingyuan, Ge, Jingguo, Wu, Yulei, Li, Tong, Li, Hui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Xu, Yingrui
Hu, Jingyuan
Ge, Jingguo
Wu, Yulei
Li, Tong
Li, Hui
description Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.
doi_str_mv 10.1109/ICASSP49357.2023.10096567
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10096567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10096567</ieee_id><sourcerecordid>10096567</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-e8335d7203ec0393b183525590c28e4e8efce8ef15e9922d70df3594469768d73</originalsourceid><addsrcrecordid>eNo1j8FKw0AURUdBsK3-gYvxAxLfzMtk5i0lVisElFbBXRmTF42kE0nGgn9viro5d3O43CvEpYJUKaCr--J6s3nMCI1NNWhMFQDlJrdHYq6sdipHbe2xmGm0lCiCl1MxH8cPAHA2czOxKvoQBz_Gds-yZD-ENrxJH2V8Z7nmzse2D9KHWi73HOKk7LmTTT_I9ddu4g1Hrg7OmThpfDfy-V8uxPPt8qlYJeXD3bSyTFqlKCbsEE1tNSBXgISvyqHRxhBU2nHGjpvqAGWYSOvaQt2goSzLyeautrgQF7-9LTNvP4d254fv7f9t_AHud0zM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Contrastive Learning at the Relation and Event Level for Rumor Detection</title><source>IEEE Xplore All Conference Series</source><creator>Xu, Yingrui ; Hu, Jingyuan ; Ge, Jingguo ; Wu, Yulei ; Li, Tong ; Li, Hui</creator><creatorcontrib>Xu, Yingrui ; Hu, Jingyuan ; Ge, Jingguo ; Wu, Yulei ; Li, Tong ; Li, Hui</creatorcontrib><description>Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1728163277</identifier><identifier>EISBN: 9781728163277</identifier><identifier>DOI: 10.1109/ICASSP49357.2023.10096567</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Annotations ; contrastive learning ; Data models ; graph neural networks ; Manuals ; Rumor detection ; self-supervised learning ; Semantics ; Signal processing ; Task analysis</subject><ispartof>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10096567$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10096567$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Yingrui</creatorcontrib><creatorcontrib>Hu, Jingyuan</creatorcontrib><creatorcontrib>Ge, Jingguo</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><title>Contrastive Learning at the Relation and Event Level for Rumor Detection</title><title>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.</description><subject>Acoustics</subject><subject>Annotations</subject><subject>contrastive learning</subject><subject>Data models</subject><subject>graph neural networks</subject><subject>Manuals</subject><subject>Rumor detection</subject><subject>self-supervised learning</subject><subject>Semantics</subject><subject>Signal processing</subject><subject>Task analysis</subject><issn>2379-190X</issn><isbn>1728163277</isbn><isbn>9781728163277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKw0AURUdBsK3-gYvxAxLfzMtk5i0lVisElFbBXRmTF42kE0nGgn9viro5d3O43CvEpYJUKaCr--J6s3nMCI1NNWhMFQDlJrdHYq6sdipHbe2xmGm0lCiCl1MxH8cPAHA2czOxKvoQBz_Gds-yZD-ENrxJH2V8Z7nmzse2D9KHWi73HOKk7LmTTT_I9ddu4g1Hrg7OmThpfDfy-V8uxPPt8qlYJeXD3bSyTFqlKCbsEE1tNSBXgISvyqHRxhBU2nHGjpvqAGWYSOvaQt2goSzLyeautrgQF7-9LTNvP4d254fv7f9t_AHud0zM</recordid><startdate>20230604</startdate><enddate>20230604</enddate><creator>Xu, Yingrui</creator><creator>Hu, Jingyuan</creator><creator>Ge, Jingguo</creator><creator>Wu, Yulei</creator><creator>Li, Tong</creator><creator>Li, Hui</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230604</creationdate><title>Contrastive Learning at the Relation and Event Level for Rumor Detection</title><author>Xu, Yingrui ; Hu, Jingyuan ; Ge, Jingguo ; Wu, Yulei ; Li, Tong ; Li, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-e8335d7203ec0393b183525590c28e4e8efce8ef15e9922d70df3594469768d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Annotations</topic><topic>contrastive learning</topic><topic>Data models</topic><topic>graph neural networks</topic><topic>Manuals</topic><topic>Rumor detection</topic><topic>self-supervised learning</topic><topic>Semantics</topic><topic>Signal processing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yingrui</creatorcontrib><creatorcontrib>Hu, Jingyuan</creatorcontrib><creatorcontrib>Ge, Jingguo</creatorcontrib><creatorcontrib>Wu, Yulei</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Yingrui</au><au>Hu, Jingyuan</au><au>Ge, Jingguo</au><au>Wu, Yulei</au><au>Li, Tong</au><au>Li, Hui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Contrastive Learning at the Relation and Event Level for Rumor Detection</atitle><btitle>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2023-06-04</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2379-190X</eissn><eisbn>1728163277</eisbn><eisbn>9781728163277</eisbn><abstract>Existing studies for rumor detection rely heavily on a large number of labeled data to operate in a fully-supervised manner. However, manual data annotation in realistic cases is very expensive and time-consuming. In this paper, we propose a novel self-supervised Relation-Event based Contrastive Learning (RECL) framework for rumor detection to address the above issue. Specifically, we present both the relation-level and event-level augmentation strategies to generate contrastive samples, which capture both the semantics revealed by repost relations and the structural features of rumor events. Moreover, contrastive learning tasks are devised to generate informative graph representations by utilizing self-supervision signals of unlabeled data. Extensive experimental results on real-world datasets demonstrate the effectiveness of our model, especially with limited labeled data.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP49357.2023.10096567</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2379-190X
ispartof ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5
issn 2379-190X
language eng
recordid cdi_ieee_primary_10096567
source IEEE Xplore All Conference Series
subjects Acoustics
Annotations
contrastive learning
Data models
graph neural networks
Manuals
Rumor detection
self-supervised learning
Semantics
Signal processing
Task analysis
title Contrastive Learning at the Relation and Event Level for Rumor Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Contrastive%20Learning%20at%20the%20Relation%20and%20Event%20Level%20for%20Rumor%20Detection&rft.btitle=ICASSP%202023%20-%202023%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Xu,%20Yingrui&rft.date=2023-06-04&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP49357.2023.10096567&rft.eisbn=1728163277&rft.eisbn_list=9781728163277&rft_dat=%3Cieee_CHZPO%3E10096567%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-e8335d7203ec0393b183525590c28e4e8efce8ef15e9922d70df3594469768d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10096567&rfr_iscdi=true