Loading…
AURA: Privacy-Preserving Augmentation to Improve Test Set Diversity in Speech Enhancement
Speech enhancement models running in production environments are commonly trained on publicly available data. This approach leads to regressions due to the lack of training/testing on representative customer data. Moreover, due to privacy reasons, developers cannot listen to customer content. This &...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Gitiaux, Xavier Khant, Aditya Beyrami, Ebrahim Reddy, Chandan Gupchup, Jayant Cutler, Ross |
description | Speech enhancement models running in production environments are commonly trained on publicly available data. This approach leads to regressions due to the lack of training/testing on representative customer data. Moreover, due to privacy reasons, developers cannot listen to customer content. This 'ears-off' situation motivates Aura, an end-to-end solution to make existing speech enhancement train and test sets more challenging and diverse while being sample efficient. Aura is 'ears-off' because it relies on a feature extractor and metrics of speech quality, DNSMOS P.835, and AECMOS, that are pre-trained on data obtained from public sources. We evalaute Aura on two speech enhancement tasks: noise suppression (NS) and audio echo cancellation (AEC). Aura samples an NS test set 0.42 harder in terms of P.835 OVRL than random sampling; and, an AEC test set 1.93 harder in AECMOS. Moreover, Aura increases diversity by 30% for NS tasks and by 530% for AEC tasks compared to greedy sampling. Moreover, Aura achieves a 26% improvement in Spearman's rank correlation coefficient (SRCC) compared to random sampling when used to stack rank NS models. |
doi_str_mv | 10.1109/ICASSP49357.2023.10096879 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10096879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10096879</ieee_id><sourcerecordid>10096879</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1709-f01be3b6c1cc751538b4f9e09384667854db4b93d63d0344b9fd0bf6b11fdd4d3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhUdBsK2-gYvxAVLvzUzmx12oVQsFi2lBVyWTuWlHbFomMdC3t6Kuztl8h4_D2C3CGBHs3WySF8VCWpHpcQqpGCOAVUbbMzZEnRpUItX6nA1SoW2CFt4u2bBtPwDAaGkG7D1fveb3fBFDX1bHZBGppdiHZsPzr82Omq7swr7h3Z7Pdoe474kvqe14QR1_CD3FNnRHHhpeHIiqLZ8227Kp6Ae8Yhd1-dnS9V-O2Opxupw8J_OXp5P2PAmowSY1oCPhVIVVpTPMhHGytgRWGKmUNpn0TjorvBIehDzV2oOrlUOsvZdejNjN724govUhhl0Zj-v_H8Q3NlZTzg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AURA: Privacy-Preserving Augmentation to Improve Test Set Diversity in Speech Enhancement</title><source>IEEE Xplore All Conference Series</source><creator>Gitiaux, Xavier ; Khant, Aditya ; Beyrami, Ebrahim ; Reddy, Chandan ; Gupchup, Jayant ; Cutler, Ross</creator><creatorcontrib>Gitiaux, Xavier ; Khant, Aditya ; Beyrami, Ebrahim ; Reddy, Chandan ; Gupchup, Jayant ; Cutler, Ross</creatorcontrib><description>Speech enhancement models running in production environments are commonly trained on publicly available data. This approach leads to regressions due to the lack of training/testing on representative customer data. Moreover, due to privacy reasons, developers cannot listen to customer content. This 'ears-off' situation motivates Aura, an end-to-end solution to make existing speech enhancement train and test sets more challenging and diverse while being sample efficient. Aura is 'ears-off' because it relies on a feature extractor and metrics of speech quality, DNSMOS P.835, and AECMOS, that are pre-trained on data obtained from public sources. We evalaute Aura on two speech enhancement tasks: noise suppression (NS) and audio echo cancellation (AEC). Aura samples an NS test set 0.42 harder in terms of P.835 OVRL than random sampling; and, an AEC test set 1.93 harder in AECMOS. Moreover, Aura increases diversity by 30% for NS tasks and by 530% for AEC tasks compared to greedy sampling. Moreover, Aura achieves a 26% improvement in Spearman's rank correlation coefficient (SRCC) compared to random sampling when used to stack rank NS models.</description><identifier>EISSN: 2379-190X</identifier><identifier>EISBN: 1728163277</identifier><identifier>EISBN: 9781728163277</identifier><identifier>DOI: 10.1109/ICASSP49357.2023.10096879</identifier><language>eng</language><publisher>IEEE</publisher><subject>Echo cancellers ; Noise reduction ; Ontologies ; Privacy ; Production ; Signal processing ; Speech enhancement ; test set</subject><ispartof>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10096879$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10096879$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gitiaux, Xavier</creatorcontrib><creatorcontrib>Khant, Aditya</creatorcontrib><creatorcontrib>Beyrami, Ebrahim</creatorcontrib><creatorcontrib>Reddy, Chandan</creatorcontrib><creatorcontrib>Gupchup, Jayant</creatorcontrib><creatorcontrib>Cutler, Ross</creatorcontrib><title>AURA: Privacy-Preserving Augmentation to Improve Test Set Diversity in Speech Enhancement</title><title>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</title><addtitle>ICASSP</addtitle><description>Speech enhancement models running in production environments are commonly trained on publicly available data. This approach leads to regressions due to the lack of training/testing on representative customer data. Moreover, due to privacy reasons, developers cannot listen to customer content. This 'ears-off' situation motivates Aura, an end-to-end solution to make existing speech enhancement train and test sets more challenging and diverse while being sample efficient. Aura is 'ears-off' because it relies on a feature extractor and metrics of speech quality, DNSMOS P.835, and AECMOS, that are pre-trained on data obtained from public sources. We evalaute Aura on two speech enhancement tasks: noise suppression (NS) and audio echo cancellation (AEC). Aura samples an NS test set 0.42 harder in terms of P.835 OVRL than random sampling; and, an AEC test set 1.93 harder in AECMOS. Moreover, Aura increases diversity by 30% for NS tasks and by 530% for AEC tasks compared to greedy sampling. Moreover, Aura achieves a 26% improvement in Spearman's rank correlation coefficient (SRCC) compared to random sampling when used to stack rank NS models.</description><subject>Echo cancellers</subject><subject>Noise reduction</subject><subject>Ontologies</subject><subject>Privacy</subject><subject>Production</subject><subject>Signal processing</subject><subject>Speech enhancement</subject><subject>test set</subject><issn>2379-190X</issn><isbn>1728163277</isbn><isbn>9781728163277</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Kw0AUhUdBsK2-gYvxAVLvzUzmx12oVQsFi2lBVyWTuWlHbFomMdC3t6Kuztl8h4_D2C3CGBHs3WySF8VCWpHpcQqpGCOAVUbbMzZEnRpUItX6nA1SoW2CFt4u2bBtPwDAaGkG7D1fveb3fBFDX1bHZBGppdiHZsPzr82Omq7swr7h3Z7Pdoe474kvqe14QR1_CD3FNnRHHhpeHIiqLZ8227Kp6Ae8Yhd1-dnS9V-O2Opxupw8J_OXp5P2PAmowSY1oCPhVIVVpTPMhHGytgRWGKmUNpn0TjorvBIehDzV2oOrlUOsvZdejNjN724govUhhl0Zj-v_H8Q3NlZTzg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Gitiaux, Xavier</creator><creator>Khant, Aditya</creator><creator>Beyrami, Ebrahim</creator><creator>Reddy, Chandan</creator><creator>Gupchup, Jayant</creator><creator>Cutler, Ross</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2023</creationdate><title>AURA: Privacy-Preserving Augmentation to Improve Test Set Diversity in Speech Enhancement</title><author>Gitiaux, Xavier ; Khant, Aditya ; Beyrami, Ebrahim ; Reddy, Chandan ; Gupchup, Jayant ; Cutler, Ross</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1709-f01be3b6c1cc751538b4f9e09384667854db4b93d63d0344b9fd0bf6b11fdd4d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Echo cancellers</topic><topic>Noise reduction</topic><topic>Ontologies</topic><topic>Privacy</topic><topic>Production</topic><topic>Signal processing</topic><topic>Speech enhancement</topic><topic>test set</topic><toplevel>online_resources</toplevel><creatorcontrib>Gitiaux, Xavier</creatorcontrib><creatorcontrib>Khant, Aditya</creatorcontrib><creatorcontrib>Beyrami, Ebrahim</creatorcontrib><creatorcontrib>Reddy, Chandan</creatorcontrib><creatorcontrib>Gupchup, Jayant</creatorcontrib><creatorcontrib>Cutler, Ross</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gitiaux, Xavier</au><au>Khant, Aditya</au><au>Beyrami, Ebrahim</au><au>Reddy, Chandan</au><au>Gupchup, Jayant</au><au>Cutler, Ross</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AURA: Privacy-Preserving Augmentation to Improve Test Set Diversity in Speech Enhancement</atitle><btitle>ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)</btitle><stitle>ICASSP</stitle><date>2023</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>2379-190X</eissn><eisbn>1728163277</eisbn><eisbn>9781728163277</eisbn><abstract>Speech enhancement models running in production environments are commonly trained on publicly available data. This approach leads to regressions due to the lack of training/testing on representative customer data. Moreover, due to privacy reasons, developers cannot listen to customer content. This 'ears-off' situation motivates Aura, an end-to-end solution to make existing speech enhancement train and test sets more challenging and diverse while being sample efficient. Aura is 'ears-off' because it relies on a feature extractor and metrics of speech quality, DNSMOS P.835, and AECMOS, that are pre-trained on data obtained from public sources. We evalaute Aura on two speech enhancement tasks: noise suppression (NS) and audio echo cancellation (AEC). Aura samples an NS test set 0.42 harder in terms of P.835 OVRL than random sampling; and, an AEC test set 1.93 harder in AECMOS. Moreover, Aura increases diversity by 30% for NS tasks and by 530% for AEC tasks compared to greedy sampling. Moreover, Aura achieves a 26% improvement in Spearman's rank correlation coefficient (SRCC) compared to random sampling when used to stack rank NS models.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP49357.2023.10096879</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2379-190X |
ispartof | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, p.1-5 |
issn | 2379-190X |
language | eng |
recordid | cdi_ieee_primary_10096879 |
source | IEEE Xplore All Conference Series |
subjects | Echo cancellers Noise reduction Ontologies Privacy Production Signal processing Speech enhancement test set |
title | AURA: Privacy-Preserving Augmentation to Improve Test Set Diversity in Speech Enhancement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AURA:%20Privacy-Preserving%20Augmentation%20to%20Improve%20Test%20Set%20Diversity%20in%20Speech%20Enhancement&rft.btitle=ICASSP%202023%20-%202023%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech%20and%20Signal%20Processing%20(ICASSP)&rft.au=Gitiaux,%20Xavier&rft.date=2023&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=2379-190X&rft_id=info:doi/10.1109/ICASSP49357.2023.10096879&rft.eisbn=1728163277&rft.eisbn_list=9781728163277&rft_dat=%3Cieee_CHZPO%3E10096879%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1709-f01be3b6c1cc751538b4f9e09384667854db4b93d63d0344b9fd0bf6b11fdd4d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10096879&rfr_iscdi=true |