Loading…
W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology
On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | He, Shujun Zhang, Tingting Qian, Zhiyu Shi, Yongrong |
description | On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package. |
doi_str_mv | 10.1109/IMWS-AMP54652.2022.10107132 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10107132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107132</ieee_id><sourcerecordid>10107132</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-9745ac4fec6f2966907e46fce6be0d00c68d4491475c68fefd72593faf4644953</originalsourceid><addsrcrecordid>eNpNkEFLAzEUhKMgWGr_gYeA560v2ZekObZFa6HFgpU9lrj70kbaTcmuSv-9S1XwNMPHMAzD2J2AoRBg7-fL4iUbL1cKtZJDCVIOBQgwIpcXbGDNSGit0IxylJesJ7XFTForr9mgad4BIJeAgKrHDkU2cXXFF2G7a3lBZzmD-MVXKfqwJ75Orm5CG2LNfYoHvgxlik2bwpG3kRfuk7YfoSI-cQ1VvEvN3PEfXlO5q-M-bk837Mq7fUODX-2z18eH9fQpWzzP5tPxIgvdrjazBpUr0VOpvbRaWzCE2pek3wgqgFKPKkQr0KjOevKVkcrm3nnUHVd5n93-9AYi2hxTOLh02vw9lH8D0YpcOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</title><source>IEEE Xplore All Conference Series</source><creator>He, Shujun ; Zhang, Tingting ; Qian, Zhiyu ; Shi, Yongrong</creator><creatorcontrib>He, Shujun ; Zhang, Tingting ; Qian, Zhiyu ; Shi, Yongrong</creatorcontrib><description>On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.</description><identifier>EISSN: 2694-2992</identifier><identifier>EISBN: 9781665478342</identifier><identifier>EISBN: 1665478349</identifier><identifier>DOI: 10.1109/IMWS-AMP54652.2022.10107132</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic scattering ; Gap waveguide ; Microstrip ; Pins ; Radio frequency ; Simulation ; substrate integration ; transition ; W-band ; Waveguide transitions</subject><ispartof>2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2022, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10107132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Shujun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Qian, Zhiyu</creatorcontrib><creatorcontrib>Shi, Yongrong</creatorcontrib><title>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</title><title>2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)</title><addtitle>IMWS-AMP</addtitle><description>On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.</description><subject>Electromagnetic scattering</subject><subject>Gap waveguide</subject><subject>Microstrip</subject><subject>Pins</subject><subject>Radio frequency</subject><subject>Simulation</subject><subject>substrate integration</subject><subject>transition</subject><subject>W-band</subject><subject>Waveguide transitions</subject><issn>2694-2992</issn><isbn>9781665478342</isbn><isbn>1665478349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkEFLAzEUhKMgWGr_gYeA560v2ZekObZFa6HFgpU9lrj70kbaTcmuSv-9S1XwNMPHMAzD2J2AoRBg7-fL4iUbL1cKtZJDCVIOBQgwIpcXbGDNSGit0IxylJesJ7XFTForr9mgad4BIJeAgKrHDkU2cXXFF2G7a3lBZzmD-MVXKfqwJ75Orm5CG2LNfYoHvgxlik2bwpG3kRfuk7YfoSI-cQ1VvEvN3PEfXlO5q-M-bk837Mq7fUODX-2z18eH9fQpWzzP5tPxIgvdrjazBpUr0VOpvbRaWzCE2pek3wgqgFKPKkQr0KjOevKVkcrm3nnUHVd5n93-9AYi2hxTOLh02vw9lH8D0YpcOw</recordid><startdate>20221127</startdate><enddate>20221127</enddate><creator>He, Shujun</creator><creator>Zhang, Tingting</creator><creator>Qian, Zhiyu</creator><creator>Shi, Yongrong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221127</creationdate><title>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</title><author>He, Shujun ; Zhang, Tingting ; Qian, Zhiyu ; Shi, Yongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-9745ac4fec6f2966907e46fce6be0d00c68d4491475c68fefd72593faf4644953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electromagnetic scattering</topic><topic>Gap waveguide</topic><topic>Microstrip</topic><topic>Pins</topic><topic>Radio frequency</topic><topic>Simulation</topic><topic>substrate integration</topic><topic>transition</topic><topic>W-band</topic><topic>Waveguide transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Shujun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Qian, Zhiyu</creatorcontrib><creatorcontrib>Shi, Yongrong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Shujun</au><au>Zhang, Tingting</au><au>Qian, Zhiyu</au><au>Shi, Yongrong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</atitle><btitle>2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)</btitle><stitle>IMWS-AMP</stitle><date>2022-11-27</date><risdate>2022</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2694-2992</eissn><eisbn>9781665478342</eisbn><eisbn>1665478349</eisbn><abstract>On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.</abstract><pub>IEEE</pub><doi>10.1109/IMWS-AMP54652.2022.10107132</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2694-2992 |
ispartof | 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2022, p.1-3 |
issn | 2694-2992 |
language | eng |
recordid | cdi_ieee_primary_10107132 |
source | IEEE Xplore All Conference Series |
subjects | Electromagnetic scattering Gap waveguide Microstrip Pins Radio frequency Simulation substrate integration transition W-band Waveguide transitions |
title | W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=W-Band%20Light%20Weight%20and%20Low%20Profile%20Transition%20from%20Microstrip%20to%20Waveguide%20Based%20on%20Gap%20Waveguide%20Technology&rft.btitle=2022%20IEEE%20MTT-S%20International%20Microwave%20Workshop%20Series%20on%20Advanced%20Materials%20and%20Processes%20for%20RF%20and%20THz%20Applications%20(IMWS-AMP)&rft.au=He,%20Shujun&rft.date=2022-11-27&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2694-2992&rft_id=info:doi/10.1109/IMWS-AMP54652.2022.10107132&rft.eisbn=9781665478342&rft.eisbn_list=1665478349&rft_dat=%3Cieee_CHZPO%3E10107132%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-9745ac4fec6f2966907e46fce6be0d00c68d4491475c68fefd72593faf4644953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10107132&rfr_iscdi=true |