Loading…

W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology

On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated...

Full description

Saved in:
Bibliographic Details
Main Authors: He, Shujun, Zhang, Tingting, Qian, Zhiyu, Shi, Yongrong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator He, Shujun
Zhang, Tingting
Qian, Zhiyu
Shi, Yongrong
description On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.
doi_str_mv 10.1109/IMWS-AMP54652.2022.10107132
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10107132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10107132</ieee_id><sourcerecordid>10107132</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-9745ac4fec6f2966907e46fce6be0d00c68d4491475c68fefd72593faf4644953</originalsourceid><addsrcrecordid>eNpNkEFLAzEUhKMgWGr_gYeA560v2ZekObZFa6HFgpU9lrj70kbaTcmuSv-9S1XwNMPHMAzD2J2AoRBg7-fL4iUbL1cKtZJDCVIOBQgwIpcXbGDNSGit0IxylJesJ7XFTForr9mgad4BIJeAgKrHDkU2cXXFF2G7a3lBZzmD-MVXKfqwJ75Orm5CG2LNfYoHvgxlik2bwpG3kRfuk7YfoSI-cQ1VvEvN3PEfXlO5q-M-bk837Mq7fUODX-2z18eH9fQpWzzP5tPxIgvdrjazBpUr0VOpvbRaWzCE2pek3wgqgFKPKkQr0KjOevKVkcrm3nnUHVd5n93-9AYi2hxTOLh02vw9lH8D0YpcOw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</title><source>IEEE Xplore All Conference Series</source><creator>He, Shujun ; Zhang, Tingting ; Qian, Zhiyu ; Shi, Yongrong</creator><creatorcontrib>He, Shujun ; Zhang, Tingting ; Qian, Zhiyu ; Shi, Yongrong</creatorcontrib><description>On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.</description><identifier>EISSN: 2694-2992</identifier><identifier>EISBN: 9781665478342</identifier><identifier>EISBN: 1665478349</identifier><identifier>DOI: 10.1109/IMWS-AMP54652.2022.10107132</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromagnetic scattering ; Gap waveguide ; Microstrip ; Pins ; Radio frequency ; Simulation ; substrate integration ; transition ; W-band ; Waveguide transitions</subject><ispartof>2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2022, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10107132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10107132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Shujun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Qian, Zhiyu</creatorcontrib><creatorcontrib>Shi, Yongrong</creatorcontrib><title>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</title><title>2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)</title><addtitle>IMWS-AMP</addtitle><description>On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.</description><subject>Electromagnetic scattering</subject><subject>Gap waveguide</subject><subject>Microstrip</subject><subject>Pins</subject><subject>Radio frequency</subject><subject>Simulation</subject><subject>substrate integration</subject><subject>transition</subject><subject>W-band</subject><subject>Waveguide transitions</subject><issn>2694-2992</issn><isbn>9781665478342</isbn><isbn>1665478349</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNkEFLAzEUhKMgWGr_gYeA560v2ZekObZFa6HFgpU9lrj70kbaTcmuSv-9S1XwNMPHMAzD2J2AoRBg7-fL4iUbL1cKtZJDCVIOBQgwIpcXbGDNSGit0IxylJesJ7XFTForr9mgad4BIJeAgKrHDkU2cXXFF2G7a3lBZzmD-MVXKfqwJ75Orm5CG2LNfYoHvgxlik2bwpG3kRfuk7YfoSI-cQ1VvEvN3PEfXlO5q-M-bk837Mq7fUODX-2z18eH9fQpWzzP5tPxIgvdrjazBpUr0VOpvbRaWzCE2pek3wgqgFKPKkQr0KjOevKVkcrm3nnUHVd5n93-9AYi2hxTOLh02vw9lH8D0YpcOw</recordid><startdate>20221127</startdate><enddate>20221127</enddate><creator>He, Shujun</creator><creator>Zhang, Tingting</creator><creator>Qian, Zhiyu</creator><creator>Shi, Yongrong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221127</creationdate><title>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</title><author>He, Shujun ; Zhang, Tingting ; Qian, Zhiyu ; Shi, Yongrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-9745ac4fec6f2966907e46fce6be0d00c68d4491475c68fefd72593faf4644953</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electromagnetic scattering</topic><topic>Gap waveguide</topic><topic>Microstrip</topic><topic>Pins</topic><topic>Radio frequency</topic><topic>Simulation</topic><topic>substrate integration</topic><topic>transition</topic><topic>W-band</topic><topic>Waveguide transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Shujun</creatorcontrib><creatorcontrib>Zhang, Tingting</creatorcontrib><creatorcontrib>Qian, Zhiyu</creatorcontrib><creatorcontrib>Shi, Yongrong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Shujun</au><au>Zhang, Tingting</au><au>Qian, Zhiyu</au><au>Shi, Yongrong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology</atitle><btitle>2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)</btitle><stitle>IMWS-AMP</stitle><date>2022-11-27</date><risdate>2022</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><eissn>2694-2992</eissn><eisbn>9781665478342</eisbn><eisbn>1665478349</eisbn><abstract>On the base of gap waveguide (GWG), a transition is designed between microstrip line (MSL) and waveguide at W-band in this paper. The proposed MSL to waveguide transition consists of MSL, groove GWG, ridge GWG and WR-10 waveguide. The electromagnetic waves propagate from MSL to substrate integrated waveguide (SIW), then the energy transfer from SIW to groove GWG by two metallic pins to coupled electromagnetic waves. Then, the groove GWG is connected to the ridge GWG. Finally, the ridge GWG probe is applied for WR-10 waveguide transition. For the groove GWG and ridge GWG, ball-grid-array (BGA) play a significant role of improving performance, and limit the energy transmission over the path we have designed. The simulated results show the operating frequencies of the proposed transition are from 85.5 to 104 GHz. The proposed transition has advantages of light weight and low profile, and has potential applications in antenna in package.</abstract><pub>IEEE</pub><doi>10.1109/IMWS-AMP54652.2022.10107132</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2694-2992
ispartof 2022 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2022, p.1-3
issn 2694-2992
language eng
recordid cdi_ieee_primary_10107132
source IEEE Xplore All Conference Series
subjects Electromagnetic scattering
Gap waveguide
Microstrip
Pins
Radio frequency
Simulation
substrate integration
transition
W-band
Waveguide transitions
title W-Band Light Weight and Low Profile Transition from Microstrip to Waveguide Based on Gap Waveguide Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=W-Band%20Light%20Weight%20and%20Low%20Profile%20Transition%20from%20Microstrip%20to%20Waveguide%20Based%20on%20Gap%20Waveguide%20Technology&rft.btitle=2022%20IEEE%20MTT-S%20International%20Microwave%20Workshop%20Series%20on%20Advanced%20Materials%20and%20Processes%20for%20RF%20and%20THz%20Applications%20(IMWS-AMP)&rft.au=He,%20Shujun&rft.date=2022-11-27&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.eissn=2694-2992&rft_id=info:doi/10.1109/IMWS-AMP54652.2022.10107132&rft.eisbn=9781665478342&rft.eisbn_list=1665478349&rft_dat=%3Cieee_CHZPO%3E10107132%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-9745ac4fec6f2966907e46fce6be0d00c68d4491475c68fefd72593faf4644953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10107132&rfr_iscdi=true