Loading…

Soil NPK Prediction using Enhanced Genetic Algorithm

Agriculture is one of the primary sources of livelihood and revenue in the globe that satisfies human needs. To gain healthy crop yields, the farmers should give importance to the soil health. The objective of this work is to propose an Enhanced Genetic Algorithm (EGA) model for soil nutrient predic...

Full description

Saved in:
Bibliographic Details
Main Authors: Irene Monica, N, Pooja, Shree R, Rithiga, S, Madhumathi, R
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2018
container_issue
container_start_page 2014
container_title
container_volume 1
creator Irene Monica, N
Pooja, Shree R
Rithiga, S
Madhumathi, R
description Agriculture is one of the primary sources of livelihood and revenue in the globe that satisfies human needs. To gain healthy crop yields, the farmers should give importance to the soil health. The objective of this work is to propose an Enhanced Genetic Algorithm (EGA) model for soil nutrient prediction using the factors like temperature, humidity, pH, and rainfall. The algorithm calculates the Nitrogen, Phosphorus, and Potassium (NPK) values based on these inputs and uses rank-based selection for fitness selection. Enhanced crossover and mutation techniques are also done to increase its performance. In order to accurately identify the NPK values in soil, the enhanced genetic algorithm has been used. The algorithm's accuracy is evaluated using a dataset of soil, and it is found to be higher than that of conventional genetic algorithm. By providing more detailed and timely soil nutrient data, this enhanced genetic algorithm has the potential to help farmers optimize their crop yield.
doi_str_mv 10.1109/ICACCS57279.2023.10113121
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10113121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10113121</ieee_id><sourcerecordid>10113121</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-dea9fe0eb880f86b7121cfc9dc9657e533060c0ca311736f7b35b714d0bf921d3</originalsourceid><addsrcrecordid>eNo1j0FOwzAQRQ0SElXJDViYA6TMeOrYXlZRKYgKKhXWVWKPW6M0QUlYcHsiAau_eXp6X4g7hAUiuPunclWWe22UcQsFihYIiIQKL0TmjLOkgZwhU1yKmdJG50ZZey2yYfgAAELrrLUzsdx3qZEvu2e56zkkP6aulV9Dao9y3Z6q1nOQG255TF6ummPXp_F0vhFXsWoGzv52Lt4f1m_lY7593Uxd2zwhujEPXLnIwLW1EG1Rm6nOR--Cd4U2rImgAA--IkRDRTQ16QlaBqijUxhoLm5_vYmZD599Olf99-H_KP0ASp9HEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Soil NPK Prediction using Enhanced Genetic Algorithm</title><source>IEEE Xplore All Conference Series</source><creator>Irene Monica, N ; Pooja, Shree R ; Rithiga, S ; Madhumathi, R</creator><creatorcontrib>Irene Monica, N ; Pooja, Shree R ; Rithiga, S ; Madhumathi, R</creatorcontrib><description>Agriculture is one of the primary sources of livelihood and revenue in the globe that satisfies human needs. To gain healthy crop yields, the farmers should give importance to the soil health. The objective of this work is to propose an Enhanced Genetic Algorithm (EGA) model for soil nutrient prediction using the factors like temperature, humidity, pH, and rainfall. The algorithm calculates the Nitrogen, Phosphorus, and Potassium (NPK) values based on these inputs and uses rank-based selection for fitness selection. Enhanced crossover and mutation techniques are also done to increase its performance. In order to accurately identify the NPK values in soil, the enhanced genetic algorithm has been used. The algorithm's accuracy is evaluated using a dataset of soil, and it is found to be higher than that of conventional genetic algorithm. By providing more detailed and timely soil nutrient data, this enhanced genetic algorithm has the potential to help farmers optimize their crop yield.</description><identifier>EISSN: 2575-7288</identifier><identifier>EISBN: 9798350397376</identifier><identifier>DOI: 10.1109/ICACCS57279.2023.10113121</identifier><language>eng</language><publisher>IEEE</publisher><subject>Agriculture ; Crops ; Genetic Algorithm ; Humidity ; NPK ; Phosphorus ; Prediction algorithms ; Predictive models ; Rank-based Selection ; Soil ; Soil Nutrient Prediction ; Temperature ; Two-point Crossover</subject><ispartof>2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), 2023, Vol.1, p.2014-2018</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10113121$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10113121$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irene Monica, N</creatorcontrib><creatorcontrib>Pooja, Shree R</creatorcontrib><creatorcontrib>Rithiga, S</creatorcontrib><creatorcontrib>Madhumathi, R</creatorcontrib><title>Soil NPK Prediction using Enhanced Genetic Algorithm</title><title>2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS)</title><addtitle>ICACCS</addtitle><description>Agriculture is one of the primary sources of livelihood and revenue in the globe that satisfies human needs. To gain healthy crop yields, the farmers should give importance to the soil health. The objective of this work is to propose an Enhanced Genetic Algorithm (EGA) model for soil nutrient prediction using the factors like temperature, humidity, pH, and rainfall. The algorithm calculates the Nitrogen, Phosphorus, and Potassium (NPK) values based on these inputs and uses rank-based selection for fitness selection. Enhanced crossover and mutation techniques are also done to increase its performance. In order to accurately identify the NPK values in soil, the enhanced genetic algorithm has been used. The algorithm's accuracy is evaluated using a dataset of soil, and it is found to be higher than that of conventional genetic algorithm. By providing more detailed and timely soil nutrient data, this enhanced genetic algorithm has the potential to help farmers optimize their crop yield.</description><subject>Agriculture</subject><subject>Crops</subject><subject>Genetic Algorithm</subject><subject>Humidity</subject><subject>NPK</subject><subject>Phosphorus</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Rank-based Selection</subject><subject>Soil</subject><subject>Soil Nutrient Prediction</subject><subject>Temperature</subject><subject>Two-point Crossover</subject><issn>2575-7288</issn><isbn>9798350397376</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j0FOwzAQRQ0SElXJDViYA6TMeOrYXlZRKYgKKhXWVWKPW6M0QUlYcHsiAau_eXp6X4g7hAUiuPunclWWe22UcQsFihYIiIQKL0TmjLOkgZwhU1yKmdJG50ZZey2yYfgAAELrrLUzsdx3qZEvu2e56zkkP6aulV9Dao9y3Z6q1nOQG255TF6ummPXp_F0vhFXsWoGzv52Lt4f1m_lY7593Uxd2zwhujEPXLnIwLW1EG1Rm6nOR--Cd4U2rImgAA--IkRDRTQ16QlaBqijUxhoLm5_vYmZD599Olf99-H_KP0ASp9HEQ</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Irene Monica, N</creator><creator>Pooja, Shree R</creator><creator>Rithiga, S</creator><creator>Madhumathi, R</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230317</creationdate><title>Soil NPK Prediction using Enhanced Genetic Algorithm</title><author>Irene Monica, N ; Pooja, Shree R ; Rithiga, S ; Madhumathi, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-dea9fe0eb880f86b7121cfc9dc9657e533060c0ca311736f7b35b714d0bf921d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Crops</topic><topic>Genetic Algorithm</topic><topic>Humidity</topic><topic>NPK</topic><topic>Phosphorus</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Rank-based Selection</topic><topic>Soil</topic><topic>Soil Nutrient Prediction</topic><topic>Temperature</topic><topic>Two-point Crossover</topic><toplevel>online_resources</toplevel><creatorcontrib>Irene Monica, N</creatorcontrib><creatorcontrib>Pooja, Shree R</creatorcontrib><creatorcontrib>Rithiga, S</creatorcontrib><creatorcontrib>Madhumathi, R</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irene Monica, N</au><au>Pooja, Shree R</au><au>Rithiga, S</au><au>Madhumathi, R</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Soil NPK Prediction using Enhanced Genetic Algorithm</atitle><btitle>2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS)</btitle><stitle>ICACCS</stitle><date>2023-03-17</date><risdate>2023</risdate><volume>1</volume><spage>2014</spage><epage>2018</epage><pages>2014-2018</pages><eissn>2575-7288</eissn><eisbn>9798350397376</eisbn><abstract>Agriculture is one of the primary sources of livelihood and revenue in the globe that satisfies human needs. To gain healthy crop yields, the farmers should give importance to the soil health. The objective of this work is to propose an Enhanced Genetic Algorithm (EGA) model for soil nutrient prediction using the factors like temperature, humidity, pH, and rainfall. The algorithm calculates the Nitrogen, Phosphorus, and Potassium (NPK) values based on these inputs and uses rank-based selection for fitness selection. Enhanced crossover and mutation techniques are also done to increase its performance. In order to accurately identify the NPK values in soil, the enhanced genetic algorithm has been used. The algorithm's accuracy is evaluated using a dataset of soil, and it is found to be higher than that of conventional genetic algorithm. By providing more detailed and timely soil nutrient data, this enhanced genetic algorithm has the potential to help farmers optimize their crop yield.</abstract><pub>IEEE</pub><doi>10.1109/ICACCS57279.2023.10113121</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-7288
ispartof 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), 2023, Vol.1, p.2014-2018
issn 2575-7288
language eng
recordid cdi_ieee_primary_10113121
source IEEE Xplore All Conference Series
subjects Agriculture
Crops
Genetic Algorithm
Humidity
NPK
Phosphorus
Prediction algorithms
Predictive models
Rank-based Selection
Soil
Soil Nutrient Prediction
Temperature
Two-point Crossover
title Soil NPK Prediction using Enhanced Genetic Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Soil%20NPK%20Prediction%20using%20Enhanced%20Genetic%20Algorithm&rft.btitle=2023%209th%20International%20Conference%20on%20Advanced%20Computing%20and%20Communication%20Systems%20(ICACCS)&rft.au=Irene%20Monica,%20N&rft.date=2023-03-17&rft.volume=1&rft.spage=2014&rft.epage=2018&rft.pages=2014-2018&rft.eissn=2575-7288&rft_id=info:doi/10.1109/ICACCS57279.2023.10113121&rft.eisbn=9798350397376&rft_dat=%3Cieee_CHZPO%3E10113121%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-dea9fe0eb880f86b7121cfc9dc9657e533060c0ca311736f7b35b714d0bf921d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10113121&rfr_iscdi=true