Loading…

Impact of Barrier Metal Thickness on SRAM Reliability

To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission...

Full description

Saved in:
Bibliographic Details
Main Authors: Ranjan, Rakesh, Perepa, Pavitra Ramadevi, Lee, Ki-Don, Park, Hokyung, Kim, Peter, Yerubandi, Ganesh Chakravarthy, Haefner, Jon, Kwon, Caleb Dongkyun, Jin, Min-Jung, Zhou, Wenhao, Shim, Hyewon, Chung, Shinyoung
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Ranjan, Rakesh
Perepa, Pavitra Ramadevi
Lee, Ki-Don
Park, Hokyung
Kim, Peter
Yerubandi, Ganesh Chakravarthy
Haefner, Jon
Kwon, Caleb Dongkyun
Jin, Min-Jung
Zhou, Wenhao
Shim, Hyewon
Chung, Shinyoung
description To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.
doi_str_mv 10.1109/IRPS48203.2023.10118344
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10118344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10118344</ieee_id><sourcerecordid>10118344</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-2aa5a2c08c4ac2c115ed57f95d7c677d0975df9973e59ce73673495fe8bdc1123</originalsourceid><addsrcrecordid>eNo1j8tKAzEYRmNBsK2-gWBeYMb8uWdZi9WBFmVa1yVN_sHo9EIym769BXX1bc458BHyAKwGYO6xad_X0nImas64qIEBWCHlFZmA1koqbbgdkTE4YSuwDm7IpJQvxi6G1WOimv3Jh4EeO_rkc06Y6QoH39PNZwrfByyFHg903c5WtMU--V3q03C-Jded7wve_e2UfCyeN_PXavn20sxnyypxJoeKe688D8wG6QMPAAqjMp1T0QRtTGTOqNg5ZwQqF9AIbYR0qkO7ixeaiym5_-0mRNyectr7fN7-fxQ_lcBFTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Impact of Barrier Metal Thickness on SRAM Reliability</title><source>IEEE Xplore All Conference Series</source><creator>Ranjan, Rakesh ; Perepa, Pavitra Ramadevi ; Lee, Ki-Don ; Park, Hokyung ; Kim, Peter ; Yerubandi, Ganesh Chakravarthy ; Haefner, Jon ; Kwon, Caleb Dongkyun ; Jin, Min-Jung ; Zhou, Wenhao ; Shim, Hyewon ; Chung, Shinyoung</creator><creatorcontrib>Ranjan, Rakesh ; Perepa, Pavitra Ramadevi ; Lee, Ki-Don ; Park, Hokyung ; Kim, Peter ; Yerubandi, Ganesh Chakravarthy ; Haefner, Jon ; Kwon, Caleb Dongkyun ; Jin, Min-Jung ; Zhou, Wenhao ; Shim, Hyewon ; Chung, Shinyoung</creatorcontrib><description>To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.</description><identifier>EISSN: 1938-1891</identifier><identifier>EISBN: 1665456728</identifier><identifier>EISBN: 9781665456722</identifier><identifier>DOI: 10.1109/IRPS48203.2023.10118344</identifier><language>eng</language><publisher>IEEE</publisher><subject>BTI Recovery ; Degradation ; FinFET ; Logic gates ; Metals ; Random access memory ; Reliability engineering ; RTN ; Semiconductor device reliability ; SNM ; SRAM ; Systematics ; Traps</subject><ispartof>2023 IEEE International Reliability Physics Symposium (IRPS), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10118344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10118344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Perepa, Pavitra Ramadevi</creatorcontrib><creatorcontrib>Lee, Ki-Don</creatorcontrib><creatorcontrib>Park, Hokyung</creatorcontrib><creatorcontrib>Kim, Peter</creatorcontrib><creatorcontrib>Yerubandi, Ganesh Chakravarthy</creatorcontrib><creatorcontrib>Haefner, Jon</creatorcontrib><creatorcontrib>Kwon, Caleb Dongkyun</creatorcontrib><creatorcontrib>Jin, Min-Jung</creatorcontrib><creatorcontrib>Zhou, Wenhao</creatorcontrib><creatorcontrib>Shim, Hyewon</creatorcontrib><creatorcontrib>Chung, Shinyoung</creatorcontrib><title>Impact of Barrier Metal Thickness on SRAM Reliability</title><title>2023 IEEE International Reliability Physics Symposium (IRPS)</title><addtitle>IRPS</addtitle><description>To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.</description><subject>BTI Recovery</subject><subject>Degradation</subject><subject>FinFET</subject><subject>Logic gates</subject><subject>Metals</subject><subject>Random access memory</subject><subject>Reliability engineering</subject><subject>RTN</subject><subject>Semiconductor device reliability</subject><subject>SNM</subject><subject>SRAM</subject><subject>Systematics</subject><subject>Traps</subject><issn>1938-1891</issn><isbn>1665456728</isbn><isbn>9781665456722</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKAzEYRmNBsK2-gWBeYMb8uWdZi9WBFmVa1yVN_sHo9EIym769BXX1bc458BHyAKwGYO6xad_X0nImas64qIEBWCHlFZmA1koqbbgdkTE4YSuwDm7IpJQvxi6G1WOimv3Jh4EeO_rkc06Y6QoH39PNZwrfByyFHg903c5WtMU--V3q03C-Jded7wve_e2UfCyeN_PXavn20sxnyypxJoeKe688D8wG6QMPAAqjMp1T0QRtTGTOqNg5ZwQqF9AIbYR0qkO7ixeaiym5_-0mRNyectr7fN7-fxQ_lcBFTw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Ranjan, Rakesh</creator><creator>Perepa, Pavitra Ramadevi</creator><creator>Lee, Ki-Don</creator><creator>Park, Hokyung</creator><creator>Kim, Peter</creator><creator>Yerubandi, Ganesh Chakravarthy</creator><creator>Haefner, Jon</creator><creator>Kwon, Caleb Dongkyun</creator><creator>Jin, Min-Jung</creator><creator>Zhou, Wenhao</creator><creator>Shim, Hyewon</creator><creator>Chung, Shinyoung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202303</creationdate><title>Impact of Barrier Metal Thickness on SRAM Reliability</title><author>Ranjan, Rakesh ; Perepa, Pavitra Ramadevi ; Lee, Ki-Don ; Park, Hokyung ; Kim, Peter ; Yerubandi, Ganesh Chakravarthy ; Haefner, Jon ; Kwon, Caleb Dongkyun ; Jin, Min-Jung ; Zhou, Wenhao ; Shim, Hyewon ; Chung, Shinyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-2aa5a2c08c4ac2c115ed57f95d7c677d0975df9973e59ce73673495fe8bdc1123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BTI Recovery</topic><topic>Degradation</topic><topic>FinFET</topic><topic>Logic gates</topic><topic>Metals</topic><topic>Random access memory</topic><topic>Reliability engineering</topic><topic>RTN</topic><topic>Semiconductor device reliability</topic><topic>SNM</topic><topic>SRAM</topic><topic>Systematics</topic><topic>Traps</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Perepa, Pavitra Ramadevi</creatorcontrib><creatorcontrib>Lee, Ki-Don</creatorcontrib><creatorcontrib>Park, Hokyung</creatorcontrib><creatorcontrib>Kim, Peter</creatorcontrib><creatorcontrib>Yerubandi, Ganesh Chakravarthy</creatorcontrib><creatorcontrib>Haefner, Jon</creatorcontrib><creatorcontrib>Kwon, Caleb Dongkyun</creatorcontrib><creatorcontrib>Jin, Min-Jung</creatorcontrib><creatorcontrib>Zhou, Wenhao</creatorcontrib><creatorcontrib>Shim, Hyewon</creatorcontrib><creatorcontrib>Chung, Shinyoung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ranjan, Rakesh</au><au>Perepa, Pavitra Ramadevi</au><au>Lee, Ki-Don</au><au>Park, Hokyung</au><au>Kim, Peter</au><au>Yerubandi, Ganesh Chakravarthy</au><au>Haefner, Jon</au><au>Kwon, Caleb Dongkyun</au><au>Jin, Min-Jung</au><au>Zhou, Wenhao</au><au>Shim, Hyewon</au><au>Chung, Shinyoung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of Barrier Metal Thickness on SRAM Reliability</atitle><btitle>2023 IEEE International Reliability Physics Symposium (IRPS)</btitle><stitle>IRPS</stitle><date>2023-03</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1938-1891</eissn><eisbn>1665456728</eisbn><eisbn>9781665456722</eisbn><abstract>To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.</abstract><pub>IEEE</pub><doi>10.1109/IRPS48203.2023.10118344</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1938-1891
ispartof 2023 IEEE International Reliability Physics Symposium (IRPS), 2023, p.1-6
issn 1938-1891
language eng
recordid cdi_ieee_primary_10118344
source IEEE Xplore All Conference Series
subjects BTI Recovery
Degradation
FinFET
Logic gates
Metals
Random access memory
Reliability engineering
RTN
Semiconductor device reliability
SNM
SRAM
Systematics
Traps
title Impact of Barrier Metal Thickness on SRAM Reliability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20Barrier%20Metal%20Thickness%20on%20SRAM%20Reliability&rft.btitle=2023%20IEEE%20International%20Reliability%20Physics%20Symposium%20(IRPS)&rft.au=Ranjan,%20Rakesh&rft.date=2023-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1938-1891&rft_id=info:doi/10.1109/IRPS48203.2023.10118344&rft.eisbn=1665456728&rft.eisbn_list=9781665456722&rft_dat=%3Cieee_CHZPO%3E10118344%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-2aa5a2c08c4ac2c115ed57f95d7c677d0975df9973e59ce73673495fe8bdc1123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10118344&rfr_iscdi=true