Loading…
Impact of Barrier Metal Thickness on SRAM Reliability
To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Ranjan, Rakesh Perepa, Pavitra Ramadevi Lee, Ki-Don Park, Hokyung Kim, Peter Yerubandi, Ganesh Chakravarthy Haefner, Jon Kwon, Caleb Dongkyun Jin, Min-Jung Zhou, Wenhao Shim, Hyewon Chung, Shinyoung |
description | To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test. |
doi_str_mv | 10.1109/IRPS48203.2023.10118344 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10118344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10118344</ieee_id><sourcerecordid>10118344</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-2aa5a2c08c4ac2c115ed57f95d7c677d0975df9973e59ce73673495fe8bdc1123</originalsourceid><addsrcrecordid>eNo1j8tKAzEYRmNBsK2-gWBeYMb8uWdZi9WBFmVa1yVN_sHo9EIym769BXX1bc458BHyAKwGYO6xad_X0nImas64qIEBWCHlFZmA1koqbbgdkTE4YSuwDm7IpJQvxi6G1WOimv3Jh4EeO_rkc06Y6QoH39PNZwrfByyFHg903c5WtMU--V3q03C-Jded7wve_e2UfCyeN_PXavn20sxnyypxJoeKe688D8wG6QMPAAqjMp1T0QRtTGTOqNg5ZwQqF9AIbYR0qkO7ixeaiym5_-0mRNyectr7fN7-fxQ_lcBFTw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Impact of Barrier Metal Thickness on SRAM Reliability</title><source>IEEE Xplore All Conference Series</source><creator>Ranjan, Rakesh ; Perepa, Pavitra Ramadevi ; Lee, Ki-Don ; Park, Hokyung ; Kim, Peter ; Yerubandi, Ganesh Chakravarthy ; Haefner, Jon ; Kwon, Caleb Dongkyun ; Jin, Min-Jung ; Zhou, Wenhao ; Shim, Hyewon ; Chung, Shinyoung</creator><creatorcontrib>Ranjan, Rakesh ; Perepa, Pavitra Ramadevi ; Lee, Ki-Don ; Park, Hokyung ; Kim, Peter ; Yerubandi, Ganesh Chakravarthy ; Haefner, Jon ; Kwon, Caleb Dongkyun ; Jin, Min-Jung ; Zhou, Wenhao ; Shim, Hyewon ; Chung, Shinyoung</creatorcontrib><description>To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.</description><identifier>EISSN: 1938-1891</identifier><identifier>EISBN: 1665456728</identifier><identifier>EISBN: 9781665456722</identifier><identifier>DOI: 10.1109/IRPS48203.2023.10118344</identifier><language>eng</language><publisher>IEEE</publisher><subject>BTI Recovery ; Degradation ; FinFET ; Logic gates ; Metals ; Random access memory ; Reliability engineering ; RTN ; Semiconductor device reliability ; SNM ; SRAM ; Systematics ; Traps</subject><ispartof>2023 IEEE International Reliability Physics Symposium (IRPS), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10118344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10118344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Perepa, Pavitra Ramadevi</creatorcontrib><creatorcontrib>Lee, Ki-Don</creatorcontrib><creatorcontrib>Park, Hokyung</creatorcontrib><creatorcontrib>Kim, Peter</creatorcontrib><creatorcontrib>Yerubandi, Ganesh Chakravarthy</creatorcontrib><creatorcontrib>Haefner, Jon</creatorcontrib><creatorcontrib>Kwon, Caleb Dongkyun</creatorcontrib><creatorcontrib>Jin, Min-Jung</creatorcontrib><creatorcontrib>Zhou, Wenhao</creatorcontrib><creatorcontrib>Shim, Hyewon</creatorcontrib><creatorcontrib>Chung, Shinyoung</creatorcontrib><title>Impact of Barrier Metal Thickness on SRAM Reliability</title><title>2023 IEEE International Reliability Physics Symposium (IRPS)</title><addtitle>IRPS</addtitle><description>To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.</description><subject>BTI Recovery</subject><subject>Degradation</subject><subject>FinFET</subject><subject>Logic gates</subject><subject>Metals</subject><subject>Random access memory</subject><subject>Reliability engineering</subject><subject>RTN</subject><subject>Semiconductor device reliability</subject><subject>SNM</subject><subject>SRAM</subject><subject>Systematics</subject><subject>Traps</subject><issn>1938-1891</issn><isbn>1665456728</isbn><isbn>9781665456722</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKAzEYRmNBsK2-gWBeYMb8uWdZi9WBFmVa1yVN_sHo9EIym769BXX1bc458BHyAKwGYO6xad_X0nImas64qIEBWCHlFZmA1koqbbgdkTE4YSuwDm7IpJQvxi6G1WOimv3Jh4EeO_rkc06Y6QoH39PNZwrfByyFHg903c5WtMU--V3q03C-Jded7wve_e2UfCyeN_PXavn20sxnyypxJoeKe688D8wG6QMPAAqjMp1T0QRtTGTOqNg5ZwQqF9AIbYR0qkO7ixeaiym5_-0mRNyectr7fN7-fxQ_lcBFTw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Ranjan, Rakesh</creator><creator>Perepa, Pavitra Ramadevi</creator><creator>Lee, Ki-Don</creator><creator>Park, Hokyung</creator><creator>Kim, Peter</creator><creator>Yerubandi, Ganesh Chakravarthy</creator><creator>Haefner, Jon</creator><creator>Kwon, Caleb Dongkyun</creator><creator>Jin, Min-Jung</creator><creator>Zhou, Wenhao</creator><creator>Shim, Hyewon</creator><creator>Chung, Shinyoung</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202303</creationdate><title>Impact of Barrier Metal Thickness on SRAM Reliability</title><author>Ranjan, Rakesh ; Perepa, Pavitra Ramadevi ; Lee, Ki-Don ; Park, Hokyung ; Kim, Peter ; Yerubandi, Ganesh Chakravarthy ; Haefner, Jon ; Kwon, Caleb Dongkyun ; Jin, Min-Jung ; Zhou, Wenhao ; Shim, Hyewon ; Chung, Shinyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-2aa5a2c08c4ac2c115ed57f95d7c677d0975df9973e59ce73673495fe8bdc1123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BTI Recovery</topic><topic>Degradation</topic><topic>FinFET</topic><topic>Logic gates</topic><topic>Metals</topic><topic>Random access memory</topic><topic>Reliability engineering</topic><topic>RTN</topic><topic>Semiconductor device reliability</topic><topic>SNM</topic><topic>SRAM</topic><topic>Systematics</topic><topic>Traps</topic><toplevel>online_resources</toplevel><creatorcontrib>Ranjan, Rakesh</creatorcontrib><creatorcontrib>Perepa, Pavitra Ramadevi</creatorcontrib><creatorcontrib>Lee, Ki-Don</creatorcontrib><creatorcontrib>Park, Hokyung</creatorcontrib><creatorcontrib>Kim, Peter</creatorcontrib><creatorcontrib>Yerubandi, Ganesh Chakravarthy</creatorcontrib><creatorcontrib>Haefner, Jon</creatorcontrib><creatorcontrib>Kwon, Caleb Dongkyun</creatorcontrib><creatorcontrib>Jin, Min-Jung</creatorcontrib><creatorcontrib>Zhou, Wenhao</creatorcontrib><creatorcontrib>Shim, Hyewon</creatorcontrib><creatorcontrib>Chung, Shinyoung</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ranjan, Rakesh</au><au>Perepa, Pavitra Ramadevi</au><au>Lee, Ki-Don</au><au>Park, Hokyung</au><au>Kim, Peter</au><au>Yerubandi, Ganesh Chakravarthy</au><au>Haefner, Jon</au><au>Kwon, Caleb Dongkyun</au><au>Jin, Min-Jung</au><au>Zhou, Wenhao</au><au>Shim, Hyewon</au><au>Chung, Shinyoung</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impact of Barrier Metal Thickness on SRAM Reliability</atitle><btitle>2023 IEEE International Reliability Physics Symposium (IRPS)</btitle><stitle>IRPS</stitle><date>2023-03</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>1938-1891</eissn><eisbn>1665456728</eisbn><eisbn>9781665456722</eisbn><abstract>To understand the effect of barrier metal thickness (BM THK) of metal gate (MG) on static random access memory (SRAM) reliability, we evaluated 3 different wafer-level reliability (WLR) methods; random telegraph noise (RTN) characteristics ( \tau_{\mathrm{c}}/\tau_{\mathrm{e}} , or capture/ emission time constant) and BTI recovery are studied on single-bit transistors, and SRAM static noise margin (SNM) degradation is also investigated with various stress configuration. Using three different MG process splits, it is observed that RTN performance is modulated by BM THK. Through BM THK optimization, the best result (i.e., \mathbf{RTN}\downarrow , bias temperature instability (BTI) \mathbf{recovery}\uparrow , SRAM SNM \mathbf{shift}\downarrow ) could be achieved, owing to less oxide damage by minimal trapping/de-trapping phenomenon. This clearly indicates the need of subtle process-reliability optimization. In addition, high temperature operating life (HTOL) is performed to confirm the SRAM Vmin shift at package-level test.</abstract><pub>IEEE</pub><doi>10.1109/IRPS48203.2023.10118344</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1938-1891 |
ispartof | 2023 IEEE International Reliability Physics Symposium (IRPS), 2023, p.1-6 |
issn | 1938-1891 |
language | eng |
recordid | cdi_ieee_primary_10118344 |
source | IEEE Xplore All Conference Series |
subjects | BTI Recovery Degradation FinFET Logic gates Metals Random access memory Reliability engineering RTN Semiconductor device reliability SNM SRAM Systematics Traps |
title | Impact of Barrier Metal Thickness on SRAM Reliability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impact%20of%20Barrier%20Metal%20Thickness%20on%20SRAM%20Reliability&rft.btitle=2023%20IEEE%20International%20Reliability%20Physics%20Symposium%20(IRPS)&rft.au=Ranjan,%20Rakesh&rft.date=2023-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=1938-1891&rft_id=info:doi/10.1109/IRPS48203.2023.10118344&rft.eisbn=1665456728&rft.eisbn_list=9781665456722&rft_dat=%3Cieee_CHZPO%3E10118344%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-2aa5a2c08c4ac2c115ed57f95d7c677d0975df9973e59ce73673495fe8bdc1123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10118344&rfr_iscdi=true |