Loading…
Linear versus Nonlinear Muscle Networks: A Case Study to Decode Hidden Synergistic Patterns During Dynamic Lower-limb Tasks
This paper, for the first time, compares the behaviors of nonlinear versus linear muscle networks in decoding hidden peripheral synergistic neural patterns during dynamic functional tasks. In this paper, we report a case study during which one healthy subject conducts a series of four lower limb rep...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 05 |
container_issue | |
container_start_page | 01 |
container_title | |
container_volume | |
creator | O'Keeffe, Rory Rathod, Vaibhavi Shirazi, Seyed Yahya Mehrdad, Sarmad Edwards, Alexis Rao, Smita Atashzar, S. Farokh |
description | This paper, for the first time, compares the behaviors of nonlinear versus linear muscle networks in decoding hidden peripheral synergistic neural patterns during dynamic functional tasks. In this paper, we report a case study during which one healthy subject conducts a series of four lower limb repetitive tasks. Specifically, the paper focuses on tasks that involve the right knee joint, including walking, sit-to-stand, stepping, and drop-jump. Twelve muscles were recorded using the Delsys Trigno system. The linear muscle network was generated using coherence analysis, and the nonlinear network was generated using Spearman's correlation. The results show that the degree, clustering coefficient, and global efficiency of the muscle network have the highest value among tasks in the linear domain for the walking task, while a low linear synergistic network behavior for the sit-to-stand is observed. On the other hand, the results show that the nonlinear functional muscle network decodes high connectivity (degree) and clustering coefficient and efficiency for the sit-to-stand when compared with other tasks. We have also developed a two-dimensional functional connectivity plane composed of linear and nonlinear features and shown that it can span the lower-limb dynamic task space. The results of this paper for the first time highlight the importance of observing both linear and nonlinear connectivity patterns, especially for complex dynamic tasks. It should also be noted that through a simultaneous EEG recording (using Brain Vision System), we have shown that, indeed, cortical activity may indirectly explain highly-connected nonlinear muscle network for the sit-to-stand task, highlighting the importance of nonlinear muscle network as a neurophysiological window of observation beyond the periphery. |
doi_str_mv | 10.1109/NER52421.2023.10123899 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10123899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10123899</ieee_id><sourcerecordid>10123899</sourcerecordid><originalsourceid>FETCH-LOGICAL-i252t-93a9f8c52d6293b08272713dc2a9608195ac83532c53c869973441db22f919643</originalsourceid><addsrcrecordid>eNo1kM1KAzEURqMgWGrfQCQvMDW5SWYSd6WtVhir2Louaea2xM6PJDOWwZe3UF0dOIsD30fIHWdjzpm5X87fFUjgY2AgxpxxENqYCzIymeZpqmQKBvglGXAjdSKUktdkFOMnY0wAk9zoAfnJfY020G8MsYt02dTlWbx00ZVIl9gem3CID3RCpzYiXbVd0dO2oTN0TYF04YsCa7rqawx7H1vv6JttWwx1pLMu-HpPZ31tq5PPmyOGpPTVlq5tPMQbcrWzZcTRH4fk43G-ni6S_PXpeTrJEw8K2sQIa3baKShOe8SWacgg46JwYE3KNDfKOi2UAKeE06kxmZCSF1uAneEmlWJIbs9dj4ibr-ArG_rN_1_iF-FBXr4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Linear versus Nonlinear Muscle Networks: A Case Study to Decode Hidden Synergistic Patterns During Dynamic Lower-limb Tasks</title><source>IEEE Xplore All Conference Series</source><creator>O'Keeffe, Rory ; Rathod, Vaibhavi ; Shirazi, Seyed Yahya ; Mehrdad, Sarmad ; Edwards, Alexis ; Rao, Smita ; Atashzar, S. Farokh</creator><creatorcontrib>O'Keeffe, Rory ; Rathod, Vaibhavi ; Shirazi, Seyed Yahya ; Mehrdad, Sarmad ; Edwards, Alexis ; Rao, Smita ; Atashzar, S. Farokh</creatorcontrib><description>This paper, for the first time, compares the behaviors of nonlinear versus linear muscle networks in decoding hidden peripheral synergistic neural patterns during dynamic functional tasks. In this paper, we report a case study during which one healthy subject conducts a series of four lower limb repetitive tasks. Specifically, the paper focuses on tasks that involve the right knee joint, including walking, sit-to-stand, stepping, and drop-jump. Twelve muscles were recorded using the Delsys Trigno system. The linear muscle network was generated using coherence analysis, and the nonlinear network was generated using Spearman's correlation. The results show that the degree, clustering coefficient, and global efficiency of the muscle network have the highest value among tasks in the linear domain for the walking task, while a low linear synergistic network behavior for the sit-to-stand is observed. On the other hand, the results show that the nonlinear functional muscle network decodes high connectivity (degree) and clustering coefficient and efficiency for the sit-to-stand when compared with other tasks. We have also developed a two-dimensional functional connectivity plane composed of linear and nonlinear features and shown that it can span the lower-limb dynamic task space. The results of this paper for the first time highlight the importance of observing both linear and nonlinear connectivity patterns, especially for complex dynamic tasks. It should also be noted that through a simultaneous EEG recording (using Brain Vision System), we have shown that, indeed, cortical activity may indirectly explain highly-connected nonlinear muscle network for the sit-to-stand task, highlighting the importance of nonlinear muscle network as a neurophysiological window of observation beyond the periphery.</description><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 9781665462921</identifier><identifier>EISBN: 1665462922</identifier><identifier>DOI: 10.1109/NER52421.2023.10123899</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electroencephalography ; Legged locomotion ; Machine vision ; Muscles ; Neural engineering ; Nonlinear dynamical systems ; Statistical analysis</subject><ispartof>2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), 2023, p.01-05</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10123899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10123899$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>O'Keeffe, Rory</creatorcontrib><creatorcontrib>Rathod, Vaibhavi</creatorcontrib><creatorcontrib>Shirazi, Seyed Yahya</creatorcontrib><creatorcontrib>Mehrdad, Sarmad</creatorcontrib><creatorcontrib>Edwards, Alexis</creatorcontrib><creatorcontrib>Rao, Smita</creatorcontrib><creatorcontrib>Atashzar, S. Farokh</creatorcontrib><title>Linear versus Nonlinear Muscle Networks: A Case Study to Decode Hidden Synergistic Patterns During Dynamic Lower-limb Tasks</title><title>2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)</title><addtitle>NER</addtitle><description>This paper, for the first time, compares the behaviors of nonlinear versus linear muscle networks in decoding hidden peripheral synergistic neural patterns during dynamic functional tasks. In this paper, we report a case study during which one healthy subject conducts a series of four lower limb repetitive tasks. Specifically, the paper focuses on tasks that involve the right knee joint, including walking, sit-to-stand, stepping, and drop-jump. Twelve muscles were recorded using the Delsys Trigno system. The linear muscle network was generated using coherence analysis, and the nonlinear network was generated using Spearman's correlation. The results show that the degree, clustering coefficient, and global efficiency of the muscle network have the highest value among tasks in the linear domain for the walking task, while a low linear synergistic network behavior for the sit-to-stand is observed. On the other hand, the results show that the nonlinear functional muscle network decodes high connectivity (degree) and clustering coefficient and efficiency for the sit-to-stand when compared with other tasks. We have also developed a two-dimensional functional connectivity plane composed of linear and nonlinear features and shown that it can span the lower-limb dynamic task space. The results of this paper for the first time highlight the importance of observing both linear and nonlinear connectivity patterns, especially for complex dynamic tasks. It should also be noted that through a simultaneous EEG recording (using Brain Vision System), we have shown that, indeed, cortical activity may indirectly explain highly-connected nonlinear muscle network for the sit-to-stand task, highlighting the importance of nonlinear muscle network as a neurophysiological window of observation beyond the periphery.</description><subject>Electroencephalography</subject><subject>Legged locomotion</subject><subject>Machine vision</subject><subject>Muscles</subject><subject>Neural engineering</subject><subject>Nonlinear dynamical systems</subject><subject>Statistical analysis</subject><issn>1948-3554</issn><isbn>9781665462921</isbn><isbn>1665462922</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1KAzEURqMgWGrfQCQvMDW5SWYSd6WtVhir2Louaea2xM6PJDOWwZe3UF0dOIsD30fIHWdjzpm5X87fFUjgY2AgxpxxENqYCzIymeZpqmQKBvglGXAjdSKUktdkFOMnY0wAk9zoAfnJfY020G8MsYt02dTlWbx00ZVIl9gem3CID3RCpzYiXbVd0dO2oTN0TYF04YsCa7rqawx7H1vv6JttWwx1pLMu-HpPZ31tq5PPmyOGpPTVlq5tPMQbcrWzZcTRH4fk43G-ni6S_PXpeTrJEw8K2sQIa3baKShOe8SWacgg46JwYE3KNDfKOi2UAKeE06kxmZCSF1uAneEmlWJIbs9dj4ibr-ArG_rN_1_iF-FBXr4</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>O'Keeffe, Rory</creator><creator>Rathod, Vaibhavi</creator><creator>Shirazi, Seyed Yahya</creator><creator>Mehrdad, Sarmad</creator><creator>Edwards, Alexis</creator><creator>Rao, Smita</creator><creator>Atashzar, S. Farokh</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230424</creationdate><title>Linear versus Nonlinear Muscle Networks: A Case Study to Decode Hidden Synergistic Patterns During Dynamic Lower-limb Tasks</title><author>O'Keeffe, Rory ; Rathod, Vaibhavi ; Shirazi, Seyed Yahya ; Mehrdad, Sarmad ; Edwards, Alexis ; Rao, Smita ; Atashzar, S. Farokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i252t-93a9f8c52d6293b08272713dc2a9608195ac83532c53c869973441db22f919643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electroencephalography</topic><topic>Legged locomotion</topic><topic>Machine vision</topic><topic>Muscles</topic><topic>Neural engineering</topic><topic>Nonlinear dynamical systems</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>O'Keeffe, Rory</creatorcontrib><creatorcontrib>Rathod, Vaibhavi</creatorcontrib><creatorcontrib>Shirazi, Seyed Yahya</creatorcontrib><creatorcontrib>Mehrdad, Sarmad</creatorcontrib><creatorcontrib>Edwards, Alexis</creatorcontrib><creatorcontrib>Rao, Smita</creatorcontrib><creatorcontrib>Atashzar, S. Farokh</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>O'Keeffe, Rory</au><au>Rathod, Vaibhavi</au><au>Shirazi, Seyed Yahya</au><au>Mehrdad, Sarmad</au><au>Edwards, Alexis</au><au>Rao, Smita</au><au>Atashzar, S. Farokh</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Linear versus Nonlinear Muscle Networks: A Case Study to Decode Hidden Synergistic Patterns During Dynamic Lower-limb Tasks</atitle><btitle>2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)</btitle><stitle>NER</stitle><date>2023-04-24</date><risdate>2023</risdate><spage>01</spage><epage>05</epage><pages>01-05</pages><eissn>1948-3554</eissn><eisbn>9781665462921</eisbn><eisbn>1665462922</eisbn><abstract>This paper, for the first time, compares the behaviors of nonlinear versus linear muscle networks in decoding hidden peripheral synergistic neural patterns during dynamic functional tasks. In this paper, we report a case study during which one healthy subject conducts a series of four lower limb repetitive tasks. Specifically, the paper focuses on tasks that involve the right knee joint, including walking, sit-to-stand, stepping, and drop-jump. Twelve muscles were recorded using the Delsys Trigno system. The linear muscle network was generated using coherence analysis, and the nonlinear network was generated using Spearman's correlation. The results show that the degree, clustering coefficient, and global efficiency of the muscle network have the highest value among tasks in the linear domain for the walking task, while a low linear synergistic network behavior for the sit-to-stand is observed. On the other hand, the results show that the nonlinear functional muscle network decodes high connectivity (degree) and clustering coefficient and efficiency for the sit-to-stand when compared with other tasks. We have also developed a two-dimensional functional connectivity plane composed of linear and nonlinear features and shown that it can span the lower-limb dynamic task space. The results of this paper for the first time highlight the importance of observing both linear and nonlinear connectivity patterns, especially for complex dynamic tasks. It should also be noted that through a simultaneous EEG recording (using Brain Vision System), we have shown that, indeed, cortical activity may indirectly explain highly-connected nonlinear muscle network for the sit-to-stand task, highlighting the importance of nonlinear muscle network as a neurophysiological window of observation beyond the periphery.</abstract><pub>IEEE</pub><doi>10.1109/NER52421.2023.10123899</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1948-3554 |
ispartof | 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), 2023, p.01-05 |
issn | 1948-3554 |
language | eng |
recordid | cdi_ieee_primary_10123899 |
source | IEEE Xplore All Conference Series |
subjects | Electroencephalography Legged locomotion Machine vision Muscles Neural engineering Nonlinear dynamical systems Statistical analysis |
title | Linear versus Nonlinear Muscle Networks: A Case Study to Decode Hidden Synergistic Patterns During Dynamic Lower-limb Tasks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Linear%20versus%20Nonlinear%20Muscle%20Networks:%20A%20Case%20Study%20to%20Decode%20Hidden%20Synergistic%20Patterns%20During%20Dynamic%20Lower-limb%20Tasks&rft.btitle=2023%2011th%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering%20(NER)&rft.au=O'Keeffe,%20Rory&rft.date=2023-04-24&rft.spage=01&rft.epage=05&rft.pages=01-05&rft.eissn=1948-3554&rft_id=info:doi/10.1109/NER52421.2023.10123899&rft.eisbn=9781665462921&rft.eisbn_list=1665462922&rft_dat=%3Cieee_CHZPO%3E10123899%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i252t-93a9f8c52d6293b08272713dc2a9608195ac83532c53c869973441db22f919643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10123899&rfr_iscdi=true |