Loading…

SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation

Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in citi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2024-02, Vol.20 (2), p.1385-1396
Main Authors: Jing, Tao, Meng, Qing-Hao, Hou, Hui-Rang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83
cites cdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83
container_end_page 1396
container_issue 2
container_start_page 1385
container_title IEEE transactions on industrial informatics
container_volume 20
creator Jing, Tao
Meng, Qing-Hao
Hou, Hui-Rang
description Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .
doi_str_mv 10.1109/TII.2023.3271441
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10124663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10124663</ieee_id><sourcerecordid>2918030234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk65s50Ps1URH5VKGdrOVuJcUEsTFzsd-Pe4lIHpTrr3uTs9jN0iTBBBP6xms4kAISdS5KgUnrERaoUJQArnsU9TTKQAecmuQtgCyBykHrHFsnOftKQP8o98yle-6kPrfEc-KRcLXrrDfkcNf3MN7Xgc8LWvq54vLfXEf1ke4Y76oRo2rr9mF221C3TzV8ds_fy0Kl-T-fvLrJzOEyu0GBKEok1tjdToosW6lUioBBFJaW0a38yzzGai1lqlqmlErnUBad5kAqBubCHH7P60d-_d14HCYLbu4Pt40giNBchoQsUUnFLWuxA8tWbvN13lvw2COVoz0Zo5WjN_1iJyd0I28Zt_cRQqy6T8ATS3Zpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030234</pqid></control><display><type>article</type><title>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</title><source>IEEE Xplore (Online service)</source><creator>Jing, Tao ; Meng, Qing-Hao ; Hou, Hui-Rang</creator><creatorcontrib>Jing, Tao ; Meng, Qing-Hao ; Hou, Hui-Rang</creatorcontrib><description>Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3271441</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Artificial neural networks ; Convolutional neural network ; Convolutional neural networks ; Datasets ; Decoding ; dual-branch encoder ; Image segmentation ; Semantic segmentation ; Semantics ; Smoke ; smoke semantic segmentation ; Surveillance systems ; Task analysis ; transformer ; Transformers ; urban smoke scene ; Visualization</subject><ispartof>IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1385-1396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</citedby><cites>FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</cites><orcidid>0000-0002-9915-7088 ; 0000-0003-0806-6808 ; 0000-0002-4608-273X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10124663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><title>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Decoding</subject><subject>dual-branch encoder</subject><subject>Image segmentation</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Smoke</subject><subject>smoke semantic segmentation</subject><subject>Surveillance systems</subject><subject>Task analysis</subject><subject>transformer</subject><subject>Transformers</subject><subject>urban smoke scene</subject><subject>Visualization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk65s50Ps1URH5VKGdrOVuJcUEsTFzsd-Pe4lIHpTrr3uTs9jN0iTBBBP6xms4kAISdS5KgUnrERaoUJQArnsU9TTKQAecmuQtgCyBykHrHFsnOftKQP8o98yle-6kPrfEc-KRcLXrrDfkcNf3MN7Xgc8LWvq54vLfXEf1ke4Y76oRo2rr9mF221C3TzV8ds_fy0Kl-T-fvLrJzOEyu0GBKEok1tjdToosW6lUioBBFJaW0a38yzzGai1lqlqmlErnUBad5kAqBubCHH7P60d-_d14HCYLbu4Pt40giNBchoQsUUnFLWuxA8tWbvN13lvw2COVoz0Zo5WjN_1iJyd0I28Zt_cRQqy6T8ATS3Zpk</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jing, Tao</creator><creator>Meng, Qing-Hao</creator><creator>Hou, Hui-Rang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid></search><sort><creationdate>20240201</creationdate><title>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</title><author>Jing, Tao ; Meng, Qing-Hao ; Hou, Hui-Rang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Decoding</topic><topic>dual-branch encoder</topic><topic>Image segmentation</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Smoke</topic><topic>smoke semantic segmentation</topic><topic>Surveillance systems</topic><topic>Task analysis</topic><topic>transformer</topic><topic>Transformers</topic><topic>urban smoke scene</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Tao</au><au>Meng, Qing-Hao</au><au>Hou, Hui-Rang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>1385</spage><epage>1396</epage><pages>1385-1396</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3271441</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1385-1396
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_10124663
source IEEE Xplore (Online service)
subjects Annotations
Artificial neural networks
Convolutional neural network
Convolutional neural networks
Datasets
Decoding
dual-branch encoder
Image segmentation
Semantic segmentation
Semantics
Smoke
smoke semantic segmentation
Surveillance systems
Task analysis
transformer
Transformers
urban smoke scene
Visualization
title SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SmokeSeger:%20A%20Transformer-CNN%20Coupled%20Model%20for%20Urban%20Scene%20Smoke%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Jing,%20Tao&rft.date=2024-02-01&rft.volume=20&rft.issue=2&rft.spage=1385&rft.epage=1396&rft.pages=1385-1396&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3271441&rft_dat=%3Cproquest_ieee_%3E2918030234%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918030234&rft_id=info:pmid/&rft_ieee_id=10124663&rfr_iscdi=true