Loading…
SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation
Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in citi...
Saved in:
Published in: | IEEE transactions on industrial informatics 2024-02, Vol.20 (2), p.1385-1396 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83 |
container_end_page | 1396 |
container_issue | 2 |
container_start_page | 1385 |
container_title | IEEE transactions on industrial informatics |
container_volume | 20 |
creator | Jing, Tao Meng, Qing-Hao Hou, Hui-Rang |
description | Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger . |
doi_str_mv | 10.1109/TII.2023.3271441 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10124663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10124663</ieee_id><sourcerecordid>2918030234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk65s50Ps1URH5VKGdrOVuJcUEsTFzsd-Pe4lIHpTrr3uTs9jN0iTBBBP6xms4kAISdS5KgUnrERaoUJQArnsU9TTKQAecmuQtgCyBykHrHFsnOftKQP8o98yle-6kPrfEc-KRcLXrrDfkcNf3MN7Xgc8LWvq54vLfXEf1ke4Y76oRo2rr9mF221C3TzV8ds_fy0Kl-T-fvLrJzOEyu0GBKEok1tjdToosW6lUioBBFJaW0a38yzzGai1lqlqmlErnUBad5kAqBubCHH7P60d-_d14HCYLbu4Pt40giNBchoQsUUnFLWuxA8tWbvN13lvw2COVoz0Zo5WjN_1iJyd0I28Zt_cRQqy6T8ATS3Zpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918030234</pqid></control><display><type>article</type><title>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</title><source>IEEE Xplore (Online service)</source><creator>Jing, Tao ; Meng, Qing-Hao ; Hou, Hui-Rang</creator><creatorcontrib>Jing, Tao ; Meng, Qing-Hao ; Hou, Hui-Rang</creatorcontrib><description>Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2023.3271441</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Artificial neural networks ; Convolutional neural network ; Convolutional neural networks ; Datasets ; Decoding ; dual-branch encoder ; Image segmentation ; Semantic segmentation ; Semantics ; Smoke ; smoke semantic segmentation ; Surveillance systems ; Task analysis ; transformer ; Transformers ; urban smoke scene ; Visualization</subject><ispartof>IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1385-1396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</citedby><cites>FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</cites><orcidid>0000-0002-9915-7088 ; 0000-0003-0806-6808 ; 0000-0002-4608-273X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10124663$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><title>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .</description><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Decoding</subject><subject>dual-branch encoder</subject><subject>Image segmentation</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Smoke</subject><subject>smoke semantic segmentation</subject><subject>Surveillance systems</subject><subject>Task analysis</subject><subject>transformer</subject><subject>Transformers</subject><subject>urban smoke scene</subject><subject>Visualization</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk65s50Ps1URH5VKGdrOVuJcUEsTFzsd-Pe4lIHpTrr3uTs9jN0iTBBBP6xms4kAISdS5KgUnrERaoUJQArnsU9TTKQAecmuQtgCyBykHrHFsnOftKQP8o98yle-6kPrfEc-KRcLXrrDfkcNf3MN7Xgc8LWvq54vLfXEf1ke4Y76oRo2rr9mF221C3TzV8ds_fy0Kl-T-fvLrJzOEyu0GBKEok1tjdToosW6lUioBBFJaW0a38yzzGai1lqlqmlErnUBad5kAqBubCHH7P60d-_d14HCYLbu4Pt40giNBchoQsUUnFLWuxA8tWbvN13lvw2COVoz0Zo5WjN_1iJyd0I28Zt_cRQqy6T8ATS3Zpk</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Jing, Tao</creator><creator>Meng, Qing-Hao</creator><creator>Hou, Hui-Rang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid></search><sort><creationdate>20240201</creationdate><title>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</title><author>Jing, Tao ; Meng, Qing-Hao ; Hou, Hui-Rang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Decoding</topic><topic>dual-branch encoder</topic><topic>Image segmentation</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Smoke</topic><topic>smoke semantic segmentation</topic><topic>Surveillance systems</topic><topic>Task analysis</topic><topic>transformer</topic><topic>Transformers</topic><topic>urban smoke scene</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jing, Tao</creatorcontrib><creatorcontrib>Meng, Qing-Hao</creatorcontrib><creatorcontrib>Hou, Hui-Rang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Tao</au><au>Meng, Qing-Hao</au><au>Hou, Hui-Rang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>2</issue><spage>1385</spage><epage>1396</epage><pages>1385-1396</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Smoke is an informative indicator of early fire and gas leakage. Segmenting the smoke from images can provide detailed information about the smoke volume, dispersion direction, and source location, which has significant implications considering the proliferation of video surveillance systems in cities. Focusing on smoke segmentation in the urban scene, we designed a dual-branch segmentation model, named SmokeSeger, which couples a transformer branch and a convolutional neural network (CNN) branch to enhance the representation of both global and local features. To address the lack of real-scene smoke datasets, we built an urban scene smoke segmentation dataset containing 3217 images of fire smoke and exhaust emissions with accurate annotations. Experiments validate that the SmokeSeger outperforms other mainstream segmentation methods on the proposed dataset. Visualization of attention maps reveals that the model could effectively capture the semantic relationship between the smoke and the corresponding source, which benefits the discrimination between smoke and smoke-like objects. More details available at https://github.com/VisAcademic/SmokeSeger .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2023.3271441</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9915-7088</orcidid><orcidid>https://orcid.org/0000-0003-0806-6808</orcidid><orcidid>https://orcid.org/0000-0002-4608-273X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2024-02, Vol.20 (2), p.1385-1396 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_10124663 |
source | IEEE Xplore (Online service) |
subjects | Annotations Artificial neural networks Convolutional neural network Convolutional neural networks Datasets Decoding dual-branch encoder Image segmentation Semantic segmentation Semantics Smoke smoke semantic segmentation Surveillance systems Task analysis transformer Transformers urban smoke scene Visualization |
title | SmokeSeger: A Transformer-CNN Coupled Model for Urban Scene Smoke Segmentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SmokeSeger:%20A%20Transformer-CNN%20Coupled%20Model%20for%20Urban%20Scene%20Smoke%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Jing,%20Tao&rft.date=2024-02-01&rft.volume=20&rft.issue=2&rft.spage=1385&rft.epage=1396&rft.pages=1385-1396&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2023.3271441&rft_dat=%3Cproquest_ieee_%3E2918030234%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-108f5cb1ed98f1bf31e142eee33cc5320766c62b99454dd27998057d6200bdc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918030234&rft_id=info:pmid/&rft_ieee_id=10124663&rfr_iscdi=true |