Loading…

Average AoI Minimization for Energy Harvesting Relay-aided Status Update Network Using Deep Reinforcement Learning

A dual-hop status update system aided by energy-harvesting (EH) relays with finite data and energy buffers is studied in this work. To achieve timely status updates, the best relays should be selected to minimize the average age of information (AoI), which is a recently proposed metric to evaluate i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE wireless communications letters 2023-08, Vol.12 (8), p.1-1
Main Authors: Huang, Sin-Yu, Liu, Kuang-Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-53d0ddeeb59c174f3d2c5b2a5ad8d87a4e6015ab94e24e6005f233959eaa54a63
container_end_page 1
container_issue 8
container_start_page 1
container_title IEEE wireless communications letters
container_volume 12
creator Huang, Sin-Yu
Liu, Kuang-Hao
description A dual-hop status update system aided by energy-harvesting (EH) relays with finite data and energy buffers is studied in this work. To achieve timely status updates, the best relays should be selected to minimize the average age of information (AoI), which is a recently proposed metric to evaluate information freshness. The average AoI minimization can be formulated as a Markov decision process (MDP), but the state space for capturing channel and buffer evolution grows exponentially with the number of relays, leading to high solution complexity. We propose a relay selection (RS) scheme based on deep reinforcement learning (DRL) according to the instantaneous channel packet freshness and buffer information of each relay. Simulation results show a significant improvement of the proposed DRL-based RS scheme over state-of-art approaches.
doi_str_mv 10.1109/LWC.2023.3278864
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10130605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10130605</ieee_id><sourcerecordid>2847965000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-53d0ddeeb59c174f3d2c5b2a5ad8d87a4e6015ab94e24e6005f233959eaa54a63</originalsourceid><addsrcrecordid>eNpNkEtLAzEQgIMoWGrvHjwEPG_NY7OPY6nVFlYFtXgM081sSW13a7Kt1F9vlhZxLjOQb2YyHyHXnA05Z_ld8TEeCibkUIo0y5L4jPQET0QkZKzO_2qZXpKB9ysWImFc8KxH3GiPDpZIR82MPtnabuwPtLapadU4OqnRLQ90Cm6PvrX1kr7iGg4RWIOGvrXQ7jydbw20SJ-x_W7cJ537jrtH3AbY1mFMiRusW1oguDq8XZGLCtYeB6fcJ_OHyft4GhUvj7PxqIhKEas2UtIwYxAXKi95GlfSiFItBCgwmclSiDHcoGCRxyi6mqkqnJirHAFUDInsk9vj3K1rvnbh_3rV7FwdVmqRxWmeqOAhUOxIla7x3mGlt85uwB00Z7qTq4Nc3cnVJ7mh5ebYYhHxH85l0KrkL-qFdjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847965000</pqid></control><display><type>article</type><title>Average AoI Minimization for Energy Harvesting Relay-aided Status Update Network Using Deep Reinforcement Learning</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Sin-Yu ; Liu, Kuang-Hao</creator><creatorcontrib>Huang, Sin-Yu ; Liu, Kuang-Hao</creatorcontrib><description>A dual-hop status update system aided by energy-harvesting (EH) relays with finite data and energy buffers is studied in this work. To achieve timely status updates, the best relays should be selected to minimize the average age of information (AoI), which is a recently proposed metric to evaluate information freshness. The average AoI minimization can be formulated as a Markov decision process (MDP), but the state space for capturing channel and buffer evolution grows exponentially with the number of relays, leading to high solution complexity. We propose a relay selection (RS) scheme based on deep reinforcement learning (DRL) according to the instantaneous channel packet freshness and buffer information of each relay. Simulation results show a significant improvement of the proposed DRL-based RS scheme over state-of-art approaches.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2023.3278864</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Age of information ; buffer-aided relaying ; Buffers ; Deep learning ; Energy harvesting ; Freshness ; Internet of Things ; Markov processes ; Measurement ; Minimization ; Optimization ; Reinforcement learning ; Relay ; relay selection ; Relays ; Sensors ; status update ; Three-dimensional displays</subject><ispartof>IEEE wireless communications letters, 2023-08, Vol.12 (8), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-53d0ddeeb59c174f3d2c5b2a5ad8d87a4e6015ab94e24e6005f233959eaa54a63</cites><orcidid>0000-0001-5329-037X ; 0000-0003-4871-3133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10130605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Sin-Yu</creatorcontrib><creatorcontrib>Liu, Kuang-Hao</creatorcontrib><title>Average AoI Minimization for Energy Harvesting Relay-aided Status Update Network Using Deep Reinforcement Learning</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>A dual-hop status update system aided by energy-harvesting (EH) relays with finite data and energy buffers is studied in this work. To achieve timely status updates, the best relays should be selected to minimize the average age of information (AoI), which is a recently proposed metric to evaluate information freshness. The average AoI minimization can be formulated as a Markov decision process (MDP), but the state space for capturing channel and buffer evolution grows exponentially with the number of relays, leading to high solution complexity. We propose a relay selection (RS) scheme based on deep reinforcement learning (DRL) according to the instantaneous channel packet freshness and buffer information of each relay. Simulation results show a significant improvement of the proposed DRL-based RS scheme over state-of-art approaches.</description><subject>Age of information</subject><subject>buffer-aided relaying</subject><subject>Buffers</subject><subject>Deep learning</subject><subject>Energy harvesting</subject><subject>Freshness</subject><subject>Internet of Things</subject><subject>Markov processes</subject><subject>Measurement</subject><subject>Minimization</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Relay</subject><subject>relay selection</subject><subject>Relays</subject><subject>Sensors</subject><subject>status update</subject><subject>Three-dimensional displays</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEQgIMoWGrvHjwEPG_NY7OPY6nVFlYFtXgM081sSW13a7Kt1F9vlhZxLjOQb2YyHyHXnA05Z_ld8TEeCibkUIo0y5L4jPQET0QkZKzO_2qZXpKB9ysWImFc8KxH3GiPDpZIR82MPtnabuwPtLapadU4OqnRLQ90Cm6PvrX1kr7iGg4RWIOGvrXQ7jydbw20SJ-x_W7cJ537jrtH3AbY1mFMiRusW1oguDq8XZGLCtYeB6fcJ_OHyft4GhUvj7PxqIhKEas2UtIwYxAXKi95GlfSiFItBCgwmclSiDHcoGCRxyi6mqkqnJirHAFUDInsk9vj3K1rvnbh_3rV7FwdVmqRxWmeqOAhUOxIla7x3mGlt85uwB00Z7qTq4Nc3cnVJ7mh5ebYYhHxH85l0KrkL-qFdjA</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Huang, Sin-Yu</creator><creator>Liu, Kuang-Hao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5329-037X</orcidid><orcidid>https://orcid.org/0000-0003-4871-3133</orcidid></search><sort><creationdate>20230801</creationdate><title>Average AoI Minimization for Energy Harvesting Relay-aided Status Update Network Using Deep Reinforcement Learning</title><author>Huang, Sin-Yu ; Liu, Kuang-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-53d0ddeeb59c174f3d2c5b2a5ad8d87a4e6015ab94e24e6005f233959eaa54a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Age of information</topic><topic>buffer-aided relaying</topic><topic>Buffers</topic><topic>Deep learning</topic><topic>Energy harvesting</topic><topic>Freshness</topic><topic>Internet of Things</topic><topic>Markov processes</topic><topic>Measurement</topic><topic>Minimization</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Relay</topic><topic>relay selection</topic><topic>Relays</topic><topic>Sensors</topic><topic>status update</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sin-Yu</creatorcontrib><creatorcontrib>Liu, Kuang-Hao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sin-Yu</au><au>Liu, Kuang-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Average AoI Minimization for Energy Harvesting Relay-aided Status Update Network Using Deep Reinforcement Learning</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>12</volume><issue>8</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>A dual-hop status update system aided by energy-harvesting (EH) relays with finite data and energy buffers is studied in this work. To achieve timely status updates, the best relays should be selected to minimize the average age of information (AoI), which is a recently proposed metric to evaluate information freshness. The average AoI minimization can be formulated as a Markov decision process (MDP), but the state space for capturing channel and buffer evolution grows exponentially with the number of relays, leading to high solution complexity. We propose a relay selection (RS) scheme based on deep reinforcement learning (DRL) according to the instantaneous channel packet freshness and buffer information of each relay. Simulation results show a significant improvement of the proposed DRL-based RS scheme over state-of-art approaches.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2023.3278864</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5329-037X</orcidid><orcidid>https://orcid.org/0000-0003-4871-3133</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2023-08, Vol.12 (8), p.1-1
issn 2162-2337
2162-2345
language eng
recordid cdi_ieee_primary_10130605
source IEEE Electronic Library (IEL) Journals
subjects Age of information
buffer-aided relaying
Buffers
Deep learning
Energy harvesting
Freshness
Internet of Things
Markov processes
Measurement
Minimization
Optimization
Reinforcement learning
Relay
relay selection
Relays
Sensors
status update
Three-dimensional displays
title Average AoI Minimization for Energy Harvesting Relay-aided Status Update Network Using Deep Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Average%20AoI%20Minimization%20for%20Energy%20Harvesting%20Relay-aided%20Status%20Update%20Network%20Using%20Deep%20Reinforcement%20Learning&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Huang,%20Sin-Yu&rft.date=2023-08-01&rft.volume=12&rft.issue=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2023.3278864&rft_dat=%3Cproquest_ieee_%3E2847965000%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-53d0ddeeb59c174f3d2c5b2a5ad8d87a4e6015ab94e24e6005f233959eaa54a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2847965000&rft_id=info:pmid/&rft_ieee_id=10130605&rfr_iscdi=true