Loading…
A Computationally Efficient Model for Large-Scale Energy Storage Systems With Active Voltage Balancing in Modular Multilevel Converters
In this paper, a novel method for modeling and simulation of large-scale energy storage systems (ESS) is provided. Specifically, the model is developed for large-scale series connected supercapacitors (SCs) intended for power electronic applications. This method is especially useful for high voltage...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a novel method for modeling and simulation of large-scale energy storage systems (ESS) is provided. Specifically, the model is developed for large-scale series connected supercapacitors (SCs) intended for power electronic applications. This method is especially useful for high voltage applications where a large number of series connected energy storage units (ESUs) are required. The proposed solution reduces a multi-node string of series connected SCs-together with their corresponding voltage balancing circuit-to a single unit with two electrical nodes. The proposed model is connected to the dc link of a three phase grid-connected modular multilevel converter (MMC). In this system, the effectiveness of the proposed model and the proposed voltage balancing scheme is demonstrated for a string comprising ten thousand series connected ESUs. The efficacy of the proposed model and the balancing algorithm is proven by simulations in the MATLAB/Simulink environment. |
---|---|
ISSN: | 2470-6647 |
DOI: | 10.1109/APEC43580.2023.10131336 |