Loading…

Augmented state Kalman filtering for AUV navigation

Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic...

Full description

Saved in:
Bibliographic Details
Main Authors: Garcia, R., Puig, J., Ridao, P., Cufi, X.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4015 vol.4
container_issue
container_start_page 4010
container_title
container_volume 4
creator Garcia, R.
Puig, J.
Ridao, P.
Cufi, X.
description Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.
doi_str_mv 10.1109/ROBOT.2002.1014362
format conference_proceeding
fullrecord <record><control><sourceid>csuc_6IE</sourceid><recordid>TN_cdi_ieee_primary_1014362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1014362</ieee_id><sourcerecordid>oai_recercat_cat_2072_59097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-dfe8482e3a0533cb101caea29f5a2a4607818633b1fb26670625e7357b7e03633</originalsourceid><addsrcrecordid>eNpFUF1LxDAQDIignvcH9CV_4OomaZP2sR7qiQcFufO1bHObEumHtDnBf2_kDtxhWZZhZpZl7E5AIgQUD-_VY7VLJIBMBIhUaXnBbsDkoIyMuGLLef6EWGkWeXnNVHlsexoCHfgcMBB_w67HgTvfBZr80HI3Trzcf_ABv32LwY_DLbt02M20PM8F2z8_7dab1bZ6eV2X25UVBYTVwVGe5pIUQqaUbWKgRUJZuAwlpjqeJXKtVCNcI7U2oGVGRmWmMQQqEgsGJ187H209kaXJYqhH9P_LX0swss4KKEyU3J8knojqr8n3OP3U51eoX64UUpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Augmented state Kalman filtering for AUV navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Garcia, R. ; Puig, J. ; Ridao, P. ; Cufi, X.</creator><creatorcontrib>Garcia, R. ; Puig, J. ; Ridao, P. ; Cufi, X.</creatorcontrib><description>Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.</description><identifier>ISBN: 0780372727</identifier><identifier>ISBN: 9780780372726</identifier><identifier>DOI: 10.1109/ROBOT.2002.1014362</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Filtering ; Image processing ; Imatges ; Kalman filtering G ; Kalman filters ; Kalman, Filtre de ; Mobile robots ; Motion estimation ; Navigation ; Oceans ; Processament ; Remotely operated vehicles ; Robots mòbils ; Robots submarins ; Sea floor ; State estimation ; Underwater robots ; Underwater vehicles</subject><ispartof>IEEE International Conference on Robotics and Automation 2002, 2002, Vol.4, p.4010-4015 vol.4</ispartof><rights>Tots els drets reservats</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1014362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1014362$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia, R.</creatorcontrib><creatorcontrib>Puig, J.</creatorcontrib><creatorcontrib>Ridao, P.</creatorcontrib><creatorcontrib>Cufi, X.</creatorcontrib><title>Augmented state Kalman filtering for AUV navigation</title><title>IEEE International Conference on Robotics and Automation 2002</title><addtitle>ROBOT</addtitle><description>Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.</description><subject>Cameras</subject><subject>Filtering</subject><subject>Image processing</subject><subject>Imatges</subject><subject>Kalman filtering G</subject><subject>Kalman filters</subject><subject>Kalman, Filtre de</subject><subject>Mobile robots</subject><subject>Motion estimation</subject><subject>Navigation</subject><subject>Oceans</subject><subject>Processament</subject><subject>Remotely operated vehicles</subject><subject>Robots mòbils</subject><subject>Robots submarins</subject><subject>Sea floor</subject><subject>State estimation</subject><subject>Underwater robots</subject><subject>Underwater vehicles</subject><isbn>0780372727</isbn><isbn>9780780372726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUF1LxDAQDIignvcH9CV_4OomaZP2sR7qiQcFufO1bHObEumHtDnBf2_kDtxhWZZhZpZl7E5AIgQUD-_VY7VLJIBMBIhUaXnBbsDkoIyMuGLLef6EWGkWeXnNVHlsexoCHfgcMBB_w67HgTvfBZr80HI3Trzcf_ABv32LwY_DLbt02M20PM8F2z8_7dab1bZ6eV2X25UVBYTVwVGe5pIUQqaUbWKgRUJZuAwlpjqeJXKtVCNcI7U2oGVGRmWmMQQqEgsGJ187H209kaXJYqhH9P_LX0swss4KKEyU3J8knojqr8n3OP3U51eoX64UUpg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Garcia, R.</creator><creator>Puig, J.</creator><creator>Ridao, P.</creator><creator>Cufi, X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope></search><sort><creationdate>20020101</creationdate><title>Augmented state Kalman filtering for AUV navigation</title><author>Garcia, R. ; Puig, J. ; Ridao, P. ; Cufi, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-dfe8482e3a0533cb101caea29f5a2a4607818633b1fb26670625e7357b7e03633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Cameras</topic><topic>Filtering</topic><topic>Image processing</topic><topic>Imatges</topic><topic>Kalman filtering G</topic><topic>Kalman filters</topic><topic>Kalman, Filtre de</topic><topic>Mobile robots</topic><topic>Motion estimation</topic><topic>Navigation</topic><topic>Oceans</topic><topic>Processament</topic><topic>Remotely operated vehicles</topic><topic>Robots mòbils</topic><topic>Robots submarins</topic><topic>Sea floor</topic><topic>State estimation</topic><topic>Underwater robots</topic><topic>Underwater vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcia, R.</creatorcontrib><creatorcontrib>Puig, J.</creatorcontrib><creatorcontrib>Ridao, P.</creatorcontrib><creatorcontrib>Cufi, X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, R.</au><au>Puig, J.</au><au>Ridao, P.</au><au>Cufi, X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Augmented state Kalman filtering for AUV navigation</atitle><btitle>IEEE International Conference on Robotics and Automation 2002</btitle><stitle>ROBOT</stitle><date>2002-01-01</date><risdate>2002</risdate><volume>4</volume><spage>4010</spage><epage>4015 vol.4</epage><pages>4010-4015 vol.4</pages><isbn>0780372727</isbn><isbn>9780780372726</isbn><abstract>Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2002.1014362</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780372727
ispartof IEEE International Conference on Robotics and Automation 2002, 2002, Vol.4, p.4010-4015 vol.4
issn
language eng
recordid cdi_ieee_primary_1014362
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Filtering
Image processing
Imatges
Kalman filtering G
Kalman filters
Kalman, Filtre de
Mobile robots
Motion estimation
Navigation
Oceans
Processament
Remotely operated vehicles
Robots mòbils
Robots submarins
Sea floor
State estimation
Underwater robots
Underwater vehicles
title Augmented state Kalman filtering for AUV navigation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Augmented%20state%20Kalman%20filtering%20for%20AUV%20navigation&rft.btitle=IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%202002&rft.au=Garcia,%20R.&rft.date=2002-01-01&rft.volume=4&rft.spage=4010&rft.epage=4015%20vol.4&rft.pages=4010-4015%20vol.4&rft.isbn=0780372727&rft.isbn_list=9780780372726&rft_id=info:doi/10.1109/ROBOT.2002.1014362&rft_dat=%3Ccsuc_6IE%3Eoai_recercat_cat_2072_59097%3C/csuc_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c190t-dfe8482e3a0533cb101caea29f5a2a4607818633b1fb26670625e7357b7e03633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1014362&rfr_iscdi=true