Loading…
Augmented state Kalman filtering for AUV navigation
Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4015 vol.4 |
container_issue | |
container_start_page | 4010 |
container_title | |
container_volume | 4 |
creator | Garcia, R. Puig, J. Ridao, P. Cufi, X. |
description | Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position. |
doi_str_mv | 10.1109/ROBOT.2002.1014362 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>csuc_6IE</sourceid><recordid>TN_cdi_ieee_primary_1014362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1014362</ieee_id><sourcerecordid>oai_recercat_cat_2072_59097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-dfe8482e3a0533cb101caea29f5a2a4607818633b1fb26670625e7357b7e03633</originalsourceid><addsrcrecordid>eNpFUF1LxDAQDIignvcH9CV_4OomaZP2sR7qiQcFufO1bHObEumHtDnBf2_kDtxhWZZhZpZl7E5AIgQUD-_VY7VLJIBMBIhUaXnBbsDkoIyMuGLLef6EWGkWeXnNVHlsexoCHfgcMBB_w67HgTvfBZr80HI3Trzcf_ABv32LwY_DLbt02M20PM8F2z8_7dab1bZ6eV2X25UVBYTVwVGe5pIUQqaUbWKgRUJZuAwlpjqeJXKtVCNcI7U2oGVGRmWmMQQqEgsGJ187H209kaXJYqhH9P_LX0swss4KKEyU3J8knojqr8n3OP3U51eoX64UUpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Augmented state Kalman filtering for AUV navigation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Garcia, R. ; Puig, J. ; Ridao, P. ; Cufi, X.</creator><creatorcontrib>Garcia, R. ; Puig, J. ; Ridao, P. ; Cufi, X.</creatorcontrib><description>Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.</description><identifier>ISBN: 0780372727</identifier><identifier>ISBN: 9780780372726</identifier><identifier>DOI: 10.1109/ROBOT.2002.1014362</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Filtering ; Image processing ; Imatges ; Kalman filtering G ; Kalman filters ; Kalman, Filtre de ; Mobile robots ; Motion estimation ; Navigation ; Oceans ; Processament ; Remotely operated vehicles ; Robots mòbils ; Robots submarins ; Sea floor ; State estimation ; Underwater robots ; Underwater vehicles</subject><ispartof>IEEE International Conference on Robotics and Automation 2002, 2002, Vol.4, p.4010-4015 vol.4</ispartof><rights>Tots els drets reservats</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1014362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,2052,27901,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1014362$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia, R.</creatorcontrib><creatorcontrib>Puig, J.</creatorcontrib><creatorcontrib>Ridao, P.</creatorcontrib><creatorcontrib>Cufi, X.</creatorcontrib><title>Augmented state Kalman filtering for AUV navigation</title><title>IEEE International Conference on Robotics and Automation 2002</title><addtitle>ROBOT</addtitle><description>Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.</description><subject>Cameras</subject><subject>Filtering</subject><subject>Image processing</subject><subject>Imatges</subject><subject>Kalman filtering G</subject><subject>Kalman filters</subject><subject>Kalman, Filtre de</subject><subject>Mobile robots</subject><subject>Motion estimation</subject><subject>Navigation</subject><subject>Oceans</subject><subject>Processament</subject><subject>Remotely operated vehicles</subject><subject>Robots mòbils</subject><subject>Robots submarins</subject><subject>Sea floor</subject><subject>State estimation</subject><subject>Underwater robots</subject><subject>Underwater vehicles</subject><isbn>0780372727</isbn><isbn>9780780372726</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFUF1LxDAQDIignvcH9CV_4OomaZP2sR7qiQcFufO1bHObEumHtDnBf2_kDtxhWZZhZpZl7E5AIgQUD-_VY7VLJIBMBIhUaXnBbsDkoIyMuGLLef6EWGkWeXnNVHlsexoCHfgcMBB_w67HgTvfBZr80HI3Trzcf_ABv32LwY_DLbt02M20PM8F2z8_7dab1bZ6eV2X25UVBYTVwVGe5pIUQqaUbWKgRUJZuAwlpjqeJXKtVCNcI7U2oGVGRmWmMQQqEgsGJ187H209kaXJYqhH9P_LX0swss4KKEyU3J8knojqr8n3OP3U51eoX64UUpg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Garcia, R.</creator><creator>Puig, J.</creator><creator>Ridao, P.</creator><creator>Cufi, X.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope></search><sort><creationdate>20020101</creationdate><title>Augmented state Kalman filtering for AUV navigation</title><author>Garcia, R. ; Puig, J. ; Ridao, P. ; Cufi, X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-dfe8482e3a0533cb101caea29f5a2a4607818633b1fb26670625e7357b7e03633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Cameras</topic><topic>Filtering</topic><topic>Image processing</topic><topic>Imatges</topic><topic>Kalman filtering G</topic><topic>Kalman filters</topic><topic>Kalman, Filtre de</topic><topic>Mobile robots</topic><topic>Motion estimation</topic><topic>Navigation</topic><topic>Oceans</topic><topic>Processament</topic><topic>Remotely operated vehicles</topic><topic>Robots mòbils</topic><topic>Robots submarins</topic><topic>Sea floor</topic><topic>State estimation</topic><topic>Underwater robots</topic><topic>Underwater vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcia, R.</creatorcontrib><creatorcontrib>Puig, J.</creatorcontrib><creatorcontrib>Ridao, P.</creatorcontrib><creatorcontrib>Cufi, X.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, R.</au><au>Puig, J.</au><au>Ridao, P.</au><au>Cufi, X.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Augmented state Kalman filtering for AUV navigation</atitle><btitle>IEEE International Conference on Robotics and Automation 2002</btitle><stitle>ROBOT</stitle><date>2002-01-01</date><risdate>2002</risdate><volume>4</volume><spage>4010</spage><epage>4015 vol.4</epage><pages>4010-4015 vol.4</pages><isbn>0780372727</isbn><isbn>9780780372726</isbn><abstract>Addresses the problem of estimating the motion of an autonomous underwater vehicle (AUV), while it constructs a visual map ("mosaic" image) of the ocean floor. The vehicle is equipped with a down-looking camera which is used to compute its motion with respect to the seafloor. As the mosaic increases in size, a systematic bias is introduced in the alignment of the images which form the mosaic. Therefore, this accumulative error produces a drift in the estimation of the position of the vehicle. When the arbitrary trajectory of the AUV crosses over itself, it is possible to reduce this propagation of image alignment errors within the mosaic. A Kalman filter with augmented state is proposed to optimally estimate both the visual map and the vehicle position.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2002.1014362</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780372727 |
ispartof | IEEE International Conference on Robotics and Automation 2002, 2002, Vol.4, p.4010-4015 vol.4 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1014362 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Cameras Filtering Image processing Imatges Kalman filtering G Kalman filters Kalman, Filtre de Mobile robots Motion estimation Navigation Oceans Processament Remotely operated vehicles Robots mòbils Robots submarins Sea floor State estimation Underwater robots Underwater vehicles |
title | Augmented state Kalman filtering for AUV navigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A45%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Augmented%20state%20Kalman%20filtering%20for%20AUV%20navigation&rft.btitle=IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%202002&rft.au=Garcia,%20R.&rft.date=2002-01-01&rft.volume=4&rft.spage=4010&rft.epage=4015%20vol.4&rft.pages=4010-4015%20vol.4&rft.isbn=0780372727&rft.isbn_list=9780780372726&rft_id=info:doi/10.1109/ROBOT.2002.1014362&rft_dat=%3Ccsuc_6IE%3Eoai_recercat_cat_2072_59097%3C/csuc_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c190t-dfe8482e3a0533cb101caea29f5a2a4607818633b1fb26670625e7357b7e03633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1014362&rfr_iscdi=true |