Loading…
Kleene Algebra With Tests for Weighted Programs
Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We e...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 116 |
container_issue | |
container_start_page | 111 |
container_title | |
container_volume | |
creator | Sedlar, Igor |
description | Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs. |
doi_str_mv | 10.1109/ISMVL57333.2023.00031 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10153849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10153849</ieee_id><sourcerecordid>10153849</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1661-35f49d8a31814c7aa079140717d28998c16b53527bbb112ea418bb7be63a4863</originalsourceid><addsrcrecordid>eNotjctKw0AUQEdBsK3-gcL8QNp7585zWYqPYkTBYN2VmeYmjaRWJtn49xZ0dTaHc4S4RZgjQlis357fS-OIaK5A0RwACM_EFK012mq0H-diosj5QillL8V0GD4BTqqDiVg89cxfLJd9yylHuenGvax4GAfZHLPccNfuR67laz62OR6GK3HRxH7g63_ORHV_V60ei_LlYb1alkV32mJBptGh9pHQo965GMEF1ODQ1cqH4HdokyGjXEoJUXHU6FNyiS1F7S3NxM1ftmPm7XfuDjH_bBHQkNeBfgHwl0G_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Kleene Algebra With Tests for Weighted Programs</title><source>IEEE Xplore All Conference Series</source><creator>Sedlar, Igor</creator><creatorcontrib>Sedlar, Igor</creatorcontrib><description>Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.</description><identifier>EISSN: 2378-2226</identifier><identifier>EISBN: 166546416X</identifier><identifier>EISBN: 9781665464161</identifier><identifier>DOI: 10.1109/ISMVL57333.2023.00031</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Cognition ; Encoding ; Kleene algebra with tests ; Mathematical models ; Probabilistic logic ; program equivalence ; program semantics ; regular programs ; Semantics ; Systematics ; weighted programs</subject><ispartof>2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL), 2023, p.111-116</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10153849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10153849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sedlar, Igor</creatorcontrib><title>Kleene Algebra With Tests for Weighted Programs</title><title>2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)</title><addtitle>ISMVL</addtitle><description>Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.</description><subject>Algebra</subject><subject>Cognition</subject><subject>Encoding</subject><subject>Kleene algebra with tests</subject><subject>Mathematical models</subject><subject>Probabilistic logic</subject><subject>program equivalence</subject><subject>program semantics</subject><subject>regular programs</subject><subject>Semantics</subject><subject>Systematics</subject><subject>weighted programs</subject><issn>2378-2226</issn><isbn>166546416X</isbn><isbn>9781665464161</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjctKw0AUQEdBsK3-gcL8QNp7585zWYqPYkTBYN2VmeYmjaRWJtn49xZ0dTaHc4S4RZgjQlis357fS-OIaK5A0RwACM_EFK012mq0H-diosj5QillL8V0GD4BTqqDiVg89cxfLJd9yylHuenGvax4GAfZHLPccNfuR67laz62OR6GK3HRxH7g63_ORHV_V60ei_LlYb1alkV32mJBptGh9pHQo965GMEF1ODQ1cqH4HdokyGjXEoJUXHU6FNyiS1F7S3NxM1ftmPm7XfuDjH_bBHQkNeBfgHwl0G_</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Sedlar, Igor</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202305</creationdate><title>Kleene Algebra With Tests for Weighted Programs</title><author>Sedlar, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1661-35f49d8a31814c7aa079140717d28998c16b53527bbb112ea418bb7be63a4863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Cognition</topic><topic>Encoding</topic><topic>Kleene algebra with tests</topic><topic>Mathematical models</topic><topic>Probabilistic logic</topic><topic>program equivalence</topic><topic>program semantics</topic><topic>regular programs</topic><topic>Semantics</topic><topic>Systematics</topic><topic>weighted programs</topic><toplevel>online_resources</toplevel><creatorcontrib>Sedlar, Igor</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sedlar, Igor</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kleene Algebra With Tests for Weighted Programs</atitle><btitle>2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)</btitle><stitle>ISMVL</stitle><date>2023-05</date><risdate>2023</risdate><spage>111</spage><epage>116</epage><pages>111-116</pages><eissn>2378-2226</eissn><eisbn>166546416X</eisbn><eisbn>9781665464161</eisbn><coden>IEEPAD</coden><abstract>Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL57333.2023.00031</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-2226 |
ispartof | 2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL), 2023, p.111-116 |
issn | 2378-2226 |
language | eng |
recordid | cdi_ieee_primary_10153849 |
source | IEEE Xplore All Conference Series |
subjects | Algebra Cognition Encoding Kleene algebra with tests Mathematical models Probabilistic logic program equivalence program semantics regular programs Semantics Systematics weighted programs |
title | Kleene Algebra With Tests for Weighted Programs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kleene%20Algebra%20With%20Tests%20for%20Weighted%20Programs&rft.btitle=2023%20IEEE%2053rd%20International%20Symposium%20on%20Multiple-Valued%20Logic%20(ISMVL)&rft.au=Sedlar,%20Igor&rft.date=2023-05&rft.spage=111&rft.epage=116&rft.pages=111-116&rft.eissn=2378-2226&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISMVL57333.2023.00031&rft.eisbn=166546416X&rft.eisbn_list=9781665464161&rft_dat=%3Cieee_CHZPO%3E10153849%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1661-35f49d8a31814c7aa079140717d28998c16b53527bbb112ea418bb7be63a4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10153849&rfr_iscdi=true |