Loading…

Kleene Algebra With Tests for Weighted Programs

Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We e...

Full description

Saved in:
Bibliographic Details
Main Author: Sedlar, Igor
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 116
container_issue
container_start_page 111
container_title
container_volume
creator Sedlar, Igor
description Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.
doi_str_mv 10.1109/ISMVL57333.2023.00031
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10153849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10153849</ieee_id><sourcerecordid>10153849</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1661-35f49d8a31814c7aa079140717d28998c16b53527bbb112ea418bb7be63a4863</originalsourceid><addsrcrecordid>eNotjctKw0AUQEdBsK3-gcL8QNp7585zWYqPYkTBYN2VmeYmjaRWJtn49xZ0dTaHc4S4RZgjQlis357fS-OIaK5A0RwACM_EFK012mq0H-diosj5QillL8V0GD4BTqqDiVg89cxfLJd9yylHuenGvax4GAfZHLPccNfuR67laz62OR6GK3HRxH7g63_ORHV_V60ei_LlYb1alkV32mJBptGh9pHQo965GMEF1ODQ1cqH4HdokyGjXEoJUXHU6FNyiS1F7S3NxM1ftmPm7XfuDjH_bBHQkNeBfgHwl0G_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Kleene Algebra With Tests for Weighted Programs</title><source>IEEE Xplore All Conference Series</source><creator>Sedlar, Igor</creator><creatorcontrib>Sedlar, Igor</creatorcontrib><description>Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.</description><identifier>EISSN: 2378-2226</identifier><identifier>EISBN: 166546416X</identifier><identifier>EISBN: 9781665464161</identifier><identifier>DOI: 10.1109/ISMVL57333.2023.00031</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; Cognition ; Encoding ; Kleene algebra with tests ; Mathematical models ; Probabilistic logic ; program equivalence ; program semantics ; regular programs ; Semantics ; Systematics ; weighted programs</subject><ispartof>2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL), 2023, p.111-116</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10153849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10153849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sedlar, Igor</creatorcontrib><title>Kleene Algebra With Tests for Weighted Programs</title><title>2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)</title><addtitle>ISMVL</addtitle><description>Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.</description><subject>Algebra</subject><subject>Cognition</subject><subject>Encoding</subject><subject>Kleene algebra with tests</subject><subject>Mathematical models</subject><subject>Probabilistic logic</subject><subject>program equivalence</subject><subject>program semantics</subject><subject>regular programs</subject><subject>Semantics</subject><subject>Systematics</subject><subject>weighted programs</subject><issn>2378-2226</issn><isbn>166546416X</isbn><isbn>9781665464161</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjctKw0AUQEdBsK3-gcL8QNp7585zWYqPYkTBYN2VmeYmjaRWJtn49xZ0dTaHc4S4RZgjQlis357fS-OIaK5A0RwACM_EFK012mq0H-diosj5QillL8V0GD4BTqqDiVg89cxfLJd9yylHuenGvax4GAfZHLPccNfuR67laz62OR6GK3HRxH7g63_ORHV_V60ei_LlYb1alkV32mJBptGh9pHQo965GMEF1ODQ1cqH4HdokyGjXEoJUXHU6FNyiS1F7S3NxM1ftmPm7XfuDjH_bBHQkNeBfgHwl0G_</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Sedlar, Igor</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202305</creationdate><title>Kleene Algebra With Tests for Weighted Programs</title><author>Sedlar, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1661-35f49d8a31814c7aa079140717d28998c16b53527bbb112ea418bb7be63a4863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Cognition</topic><topic>Encoding</topic><topic>Kleene algebra with tests</topic><topic>Mathematical models</topic><topic>Probabilistic logic</topic><topic>program equivalence</topic><topic>program semantics</topic><topic>regular programs</topic><topic>Semantics</topic><topic>Systematics</topic><topic>weighted programs</topic><toplevel>online_resources</toplevel><creatorcontrib>Sedlar, Igor</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sedlar, Igor</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kleene Algebra With Tests for Weighted Programs</atitle><btitle>2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)</btitle><stitle>ISMVL</stitle><date>2023-05</date><risdate>2023</risdate><spage>111</spage><epage>116</epage><pages>111-116</pages><eissn>2378-2226</eissn><eisbn>166546416X</eisbn><eisbn>9781665464161</eisbn><coden>IEEPAD</coden><abstract>Weighted programs generalize probabilistic programs and offer a framework for specifying and encoding mathematical models by means of an algorithmic representation. Kleene algebra with tests is an algebraic formalism based on regular expressions with applications in proving program equivalence. We extend the language of Kleene algebra with tests so that it is sufficient to formalize reasoning about a simplified version weighted programs. We introduce relational semantics for the extended language, and we generalize the relational semantics to an appropriate extension of Kleene algebra with tests, called Kleene algebra with weights and tests. We demonstrate by means of an example that Kleene algebra with weights and tests offers a simple algebraic framework for reasoning about equivalence and optimal runs of weighted programs.</abstract><pub>IEEE</pub><doi>10.1109/ISMVL57333.2023.00031</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-2226
ispartof 2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL), 2023, p.111-116
issn 2378-2226
language eng
recordid cdi_ieee_primary_10153849
source IEEE Xplore All Conference Series
subjects Algebra
Cognition
Encoding
Kleene algebra with tests
Mathematical models
Probabilistic logic
program equivalence
program semantics
regular programs
Semantics
Systematics
weighted programs
title Kleene Algebra With Tests for Weighted Programs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kleene%20Algebra%20With%20Tests%20for%20Weighted%20Programs&rft.btitle=2023%20IEEE%2053rd%20International%20Symposium%20on%20Multiple-Valued%20Logic%20(ISMVL)&rft.au=Sedlar,%20Igor&rft.date=2023-05&rft.spage=111&rft.epage=116&rft.pages=111-116&rft.eissn=2378-2226&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISMVL57333.2023.00031&rft.eisbn=166546416X&rft.eisbn_list=9781665464161&rft_dat=%3Cieee_CHZPO%3E10153849%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1661-35f49d8a31814c7aa079140717d28998c16b53527bbb112ea418bb7be63a4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10153849&rfr_iscdi=true