Loading…

An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET

Bayesian neural networks (BNNs) have been proposed to address the problems of overfitting and overconfident decision making, common in conventional neural networks (NNs), due to their ability to model and express uncertainty in their predictions. However, BNNs require multiple inference passes to pr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of solid-state circuits 2023-10, Vol.58 (10), p.1-13
Main Authors: Dorrance, Richard, Dasalukunte, Deepak, Wang, Hechen, Liu, Renzhi, Carlton, Brent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3
cites cdi_FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3
container_end_page 13
container_issue 10
container_start_page 1
container_title IEEE journal of solid-state circuits
container_volume 58
creator Dorrance, Richard
Dasalukunte, Deepak
Wang, Hechen
Liu, Renzhi
Carlton, Brent
description Bayesian neural networks (BNNs) have been proposed to address the problems of overfitting and overconfident decision making, common in conventional neural networks (NNs), due to their ability to model and express uncertainty in their predictions. However, BNNs require multiple inference passes to produce the necessary posterior distributions used to generate these highly desirable uncertainty estimates. As such, BNNs require not only an efficient, high-performance multiply-accumulation (MAC) operation but also an efficient Gaussian random number generator (GRNG) with high-quality statistics. In this article, an NN accelerator chip, leveraging a multi-bit analog compute-in-memory (CiM) static random-access memory (SRAM) macro, with a tightly coupled and highly efficient GRNG scheme, is presented in the Intel 22FFL process. The CiM macro achieves a peak energy efficiency of 32.2 TOP/sW, with 8-bit precision, while ensuring accurate on-chip matrix-vector multiplications (MVMs) with a computation error less than 0.5%. The variable precision GRNG achieves a peak throughput of 7.31 GSamp/s for an energy efficiency of \sim 1 TSamp/J. Overall, our proposed system achieves a peak energy efficiency of 1170 GOP/s/W, a 35-133 \times improvement over the state-of-the-art BNN accelerators, with 98.14% accuracy for the MNIST dataset.
doi_str_mv 10.1109/JSSC.2023.3283186
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10153995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10153995</ieee_id><sourcerecordid>2869328170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxRujiYj-ASYemnhe7LT70R4R-TKIiUD0tunuzmIVuthdNNz80y2Bg6eXmbz3JvMj5BpYB4Cpu8fZrNfhjIuO4FKAjE9IC6JIBpCIt1PSYgxkoDhj5-Sirj_8GIYSWuS3a2nfolvugn5Zmtygbei93mFttKVT3Dq98tL8VO6TdvMcV-h0Uzn6app32jNPVNuCajo3awzGtkG3Qv2NBR3pQq-1K-iDWZrGlwxfpkO6qI1dUs4Du6YDYwf9-SU5K_WqxqujtsnCb3ujYPI8HPe6kyDnKmwCHccqllpmIoEkCZUsE5FnRabDPItiiQwAtBIZyyLGJBNJUuY8jGUGMUSs0KJNbg-9G1d9bbFu0o9q66w_mXIZK08NEuZdcHDlrqprh2W6cca_sUuBpXvQ6R50ugedHkH7zM0hYxDxnx8ioVQk_gBvWnfG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869328170</pqid></control><display><type>article</type><title>An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET</title><source>IEEE Xplore (Online service)</source><creator>Dorrance, Richard ; Dasalukunte, Deepak ; Wang, Hechen ; Liu, Renzhi ; Carlton, Brent</creator><creatorcontrib>Dorrance, Richard ; Dasalukunte, Deepak ; Wang, Hechen ; Liu, Renzhi ; Carlton, Brent</creatorcontrib><description><![CDATA[Bayesian neural networks (BNNs) have been proposed to address the problems of overfitting and overconfident decision making, common in conventional neural networks (NNs), due to their ability to model and express uncertainty in their predictions. However, BNNs require multiple inference passes to produce the necessary posterior distributions used to generate these highly desirable uncertainty estimates. As such, BNNs require not only an efficient, high-performance multiply-accumulation (MAC) operation but also an efficient Gaussian random number generator (GRNG) with high-quality statistics. In this article, an NN accelerator chip, leveraging a multi-bit analog compute-in-memory (CiM) static random-access memory (SRAM) macro, with a tightly coupled and highly efficient GRNG scheme, is presented in the Intel 22FFL process. The CiM macro achieves a peak energy efficiency of 32.2 TOP/sW, with 8-bit precision, while ensuring accurate on-chip matrix-vector multiplications (MVMs) with a computation error less than 0.5%. The variable precision GRNG achieves a peak throughput of 7.31 GSamp/s for an energy efficiency of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>1 TSamp/J. Overall, our proposed system achieves a peak energy efficiency of 1170 GOP/s/W, a 35-133<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> improvement over the state-of-the-art BNN accelerators, with 98.14% accuracy for the MNIST dataset.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3283186</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog computing ; Artificial neural networks ; Bayesian analysis ; Bayesian neural network (BNN) ; complementary metal–oxide–semiconductor (CMOS) ; compute-in-memory (CiM) ; Energy efficiency ; Field programmable gate arrays ; Gaussian random number generation (GRNG) ; Mathematical analysis ; multiply-accumulate (MAC) operation ; Neural networks ; Random numbers ; Software ; Static random access memory ; System-on-chip ; Systems architecture ; Uncertainty ; weight sampler</subject><ispartof>IEEE journal of solid-state circuits, 2023-10, Vol.58 (10), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3</citedby><cites>FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3</cites><orcidid>0000-0003-4756-5394 ; 0000-0002-4462-8006 ; 0000-0002-5973-0193 ; 0000-0003-4542-4715</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10153995$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Dorrance, Richard</creatorcontrib><creatorcontrib>Dasalukunte, Deepak</creatorcontrib><creatorcontrib>Wang, Hechen</creatorcontrib><creatorcontrib>Liu, Renzhi</creatorcontrib><creatorcontrib>Carlton, Brent</creatorcontrib><title>An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[Bayesian neural networks (BNNs) have been proposed to address the problems of overfitting and overconfident decision making, common in conventional neural networks (NNs), due to their ability to model and express uncertainty in their predictions. However, BNNs require multiple inference passes to produce the necessary posterior distributions used to generate these highly desirable uncertainty estimates. As such, BNNs require not only an efficient, high-performance multiply-accumulation (MAC) operation but also an efficient Gaussian random number generator (GRNG) with high-quality statistics. In this article, an NN accelerator chip, leveraging a multi-bit analog compute-in-memory (CiM) static random-access memory (SRAM) macro, with a tightly coupled and highly efficient GRNG scheme, is presented in the Intel 22FFL process. The CiM macro achieves a peak energy efficiency of 32.2 TOP/sW, with 8-bit precision, while ensuring accurate on-chip matrix-vector multiplications (MVMs) with a computation error less than 0.5%. The variable precision GRNG achieves a peak throughput of 7.31 GSamp/s for an energy efficiency of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>1 TSamp/J. Overall, our proposed system achieves a peak energy efficiency of 1170 GOP/s/W, a 35-133<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> improvement over the state-of-the-art BNN accelerators, with 98.14% accuracy for the MNIST dataset.]]></description><subject>Analog computing</subject><subject>Artificial neural networks</subject><subject>Bayesian analysis</subject><subject>Bayesian neural network (BNN)</subject><subject>complementary metal–oxide–semiconductor (CMOS)</subject><subject>compute-in-memory (CiM)</subject><subject>Energy efficiency</subject><subject>Field programmable gate arrays</subject><subject>Gaussian random number generation (GRNG)</subject><subject>Mathematical analysis</subject><subject>multiply-accumulate (MAC) operation</subject><subject>Neural networks</subject><subject>Random numbers</subject><subject>Software</subject><subject>Static random access memory</subject><subject>System-on-chip</subject><subject>Systems architecture</subject><subject>Uncertainty</subject><subject>weight sampler</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1PAjEQxRujiYj-ASYemnhe7LT70R4R-TKIiUD0tunuzmIVuthdNNz80y2Bg6eXmbz3JvMj5BpYB4Cpu8fZrNfhjIuO4FKAjE9IC6JIBpCIt1PSYgxkoDhj5-Sirj_8GIYSWuS3a2nfolvugn5Zmtygbei93mFttKVT3Dq98tL8VO6TdvMcV-h0Uzn6app32jNPVNuCajo3awzGtkG3Qv2NBR3pQq-1K-iDWZrGlwxfpkO6qI1dUs4Du6YDYwf9-SU5K_WqxqujtsnCb3ujYPI8HPe6kyDnKmwCHccqllpmIoEkCZUsE5FnRabDPItiiQwAtBIZyyLGJBNJUuY8jGUGMUSs0KJNbg-9G1d9bbFu0o9q66w_mXIZK08NEuZdcHDlrqprh2W6cca_sUuBpXvQ6R50ugedHkH7zM0hYxDxnx8ioVQk_gBvWnfG</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Dorrance, Richard</creator><creator>Dasalukunte, Deepak</creator><creator>Wang, Hechen</creator><creator>Liu, Renzhi</creator><creator>Carlton, Brent</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4756-5394</orcidid><orcidid>https://orcid.org/0000-0002-4462-8006</orcidid><orcidid>https://orcid.org/0000-0002-5973-0193</orcidid><orcidid>https://orcid.org/0000-0003-4542-4715</orcidid></search><sort><creationdate>20231001</creationdate><title>An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET</title><author>Dorrance, Richard ; Dasalukunte, Deepak ; Wang, Hechen ; Liu, Renzhi ; Carlton, Brent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analog computing</topic><topic>Artificial neural networks</topic><topic>Bayesian analysis</topic><topic>Bayesian neural network (BNN)</topic><topic>complementary metal–oxide–semiconductor (CMOS)</topic><topic>compute-in-memory (CiM)</topic><topic>Energy efficiency</topic><topic>Field programmable gate arrays</topic><topic>Gaussian random number generation (GRNG)</topic><topic>Mathematical analysis</topic><topic>multiply-accumulate (MAC) operation</topic><topic>Neural networks</topic><topic>Random numbers</topic><topic>Software</topic><topic>Static random access memory</topic><topic>System-on-chip</topic><topic>Systems architecture</topic><topic>Uncertainty</topic><topic>weight sampler</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorrance, Richard</creatorcontrib><creatorcontrib>Dasalukunte, Deepak</creatorcontrib><creatorcontrib>Wang, Hechen</creatorcontrib><creatorcontrib>Liu, Renzhi</creatorcontrib><creatorcontrib>Carlton, Brent</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorrance, Richard</au><au>Dasalukunte, Deepak</au><au>Wang, Hechen</au><au>Liu, Renzhi</au><au>Carlton, Brent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>58</volume><issue>10</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[Bayesian neural networks (BNNs) have been proposed to address the problems of overfitting and overconfident decision making, common in conventional neural networks (NNs), due to their ability to model and express uncertainty in their predictions. However, BNNs require multiple inference passes to produce the necessary posterior distributions used to generate these highly desirable uncertainty estimates. As such, BNNs require not only an efficient, high-performance multiply-accumulation (MAC) operation but also an efficient Gaussian random number generator (GRNG) with high-quality statistics. In this article, an NN accelerator chip, leveraging a multi-bit analog compute-in-memory (CiM) static random-access memory (SRAM) macro, with a tightly coupled and highly efficient GRNG scheme, is presented in the Intel 22FFL process. The CiM macro achieves a peak energy efficiency of 32.2 TOP/sW, with 8-bit precision, while ensuring accurate on-chip matrix-vector multiplications (MVMs) with a computation error less than 0.5%. The variable precision GRNG achieves a peak throughput of 7.31 GSamp/s for an energy efficiency of <inline-formula> <tex-math notation="LaTeX">\sim</tex-math> </inline-formula>1 TSamp/J. Overall, our proposed system achieves a peak energy efficiency of 1170 GOP/s/W, a 35-133<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> improvement over the state-of-the-art BNN accelerators, with 98.14% accuracy for the MNIST dataset.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3283186</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4756-5394</orcidid><orcidid>https://orcid.org/0000-0002-4462-8006</orcidid><orcidid>https://orcid.org/0000-0002-5973-0193</orcidid><orcidid>https://orcid.org/0000-0003-4542-4715</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2023-10, Vol.58 (10), p.1-13
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_10153995
source IEEE Xplore (Online service)
subjects Analog computing
Artificial neural networks
Bayesian analysis
Bayesian neural network (BNN)
complementary metal–oxide–semiconductor (CMOS)
compute-in-memory (CiM)
Energy efficiency
Field programmable gate arrays
Gaussian random number generation (GRNG)
Mathematical analysis
multiply-accumulate (MAC) operation
Neural networks
Random numbers
Software
Static random access memory
System-on-chip
Systems architecture
Uncertainty
weight sampler
title An Energy-Efficient Bayesian Neural Network Accelerator With CiM and a Time-Interleaved Hadamard Digital GRNG Using 22-nm FinFET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A37%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Energy-Efficient%20Bayesian%20Neural%20Network%20Accelerator%20With%20CiM%20and%20a%20Time-Interleaved%20Hadamard%20Digital%20GRNG%20Using%2022-nm%20FinFET&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Dorrance,%20Richard&rft.date=2023-10-01&rft.volume=58&rft.issue=10&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3283186&rft_dat=%3Cproquest_ieee_%3E2869328170%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-a66968a8b37177498f73cbdba4cb568e0111a93b0b50080377fc2468b16150da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869328170&rft_id=info:pmid/&rft_ieee_id=10153995&rfr_iscdi=true