Loading…
A Comprehensive Performance Analysis of Stream Processing with Kafka in Cloud Native Deployments for IoT Use-cases
The constant growth of the number of Internet of Things devices drives a huge increase in data that needs to be analyzed, at times in real time. Multiple platforms are available for delivering such data to analytics engines that can perform various operations on the data with low processing latency....
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Pelle, Istvan Szoke, Bence Fayad, Abdulhalim Cinkler, Tibor Toka, Laszlo |
description | The constant growth of the number of Internet of Things devices drives a huge increase in data that needs to be analyzed, at times in real time. Multiple platforms are available for delivering such data to analytics engines that can perform various operations on the data with low processing latency. These platforms can find their home in cloud native environments where high availability and scaling to the actual workload can be easily achieved. While the deployment environment is elastic, clusters still need to be adequately dimensioned to accommodate the components of the platforms even under high load.In this paper, we provide an analysis in this regard: we discuss key performance indicators of the popular Kafka message bus and the related Kafka Streams processing engine. Namely, we analyze latency, throughput, CPU and memory resource footprint aspects of these services under varying load and processing tasks that appear in Internet of Things applications. We find subsecond processing latency and linear but heavily task-dependent scaling behavior in the other performance indicators' case. |
doi_str_mv | 10.1109/NOMS56928.2023.10154377 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10154377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10154377</ieee_id><sourcerecordid>10154377</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-c46c7d4870a503b8b8c690ea2a8a0223a1e22a78d010230485ce95a07a65b453</originalsourceid><addsrcrecordid>eNo10NtOAjEUheFqYiIib2BiX2Bw9zRtLwmeiAgk4DXZDHukOgfSjhreXox6te6-ZP2MXQsYCgH-ZjZ_XprcSzeUINVQgDBaWXvCBt46kedGWytyccp6UlmdeQv-nF2k9AagLSjosTji47beR9pRk8In8QXFso01NgXxUYPVIYXE25Ivu0hY80VsC0opNK_8K3Q7_oTlO_LQ8HHVfmz5DLsf5Jb2VXuoqekSP2p80q74S6KswETpkp2VWCUa_G2fre7vVuPHbDp_mIxH0ywI4bus0Hlht9pZQANq4zauyD0QSnQIUioUJCVatwVx_A7amYK8QbCYm402qs-uftlAROt9DDXGw_o_kfoGwStbxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Comprehensive Performance Analysis of Stream Processing with Kafka in Cloud Native Deployments for IoT Use-cases</title><source>IEEE Xplore All Conference Series</source><creator>Pelle, Istvan ; Szoke, Bence ; Fayad, Abdulhalim ; Cinkler, Tibor ; Toka, Laszlo</creator><creatorcontrib>Pelle, Istvan ; Szoke, Bence ; Fayad, Abdulhalim ; Cinkler, Tibor ; Toka, Laszlo</creatorcontrib><description>The constant growth of the number of Internet of Things devices drives a huge increase in data that needs to be analyzed, at times in real time. Multiple platforms are available for delivering such data to analytics engines that can perform various operations on the data with low processing latency. These platforms can find their home in cloud native environments where high availability and scaling to the actual workload can be easily achieved. While the deployment environment is elastic, clusters still need to be adequately dimensioned to accommodate the components of the platforms even under high load.In this paper, we provide an analysis in this regard: we discuss key performance indicators of the popular Kafka message bus and the related Kafka Streams processing engine. Namely, we analyze latency, throughput, CPU and memory resource footprint aspects of these services under varying load and processing tasks that appear in Internet of Things applications. We find subsecond processing latency and linear but heavily task-dependent scaling behavior in the other performance indicators' case.</description><identifier>EISSN: 2374-9709</identifier><identifier>EISBN: 9781665477161</identifier><identifier>EISBN: 1665477164</identifier><identifier>DOI: 10.1109/NOMS56928.2023.10154377</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; Internet of Things ; IoT ; Kafka ; Kafka Streams ; Key performance indicator ; Performance analysis ; Real-time systems ; stream processing ; Task analysis ; Throughput</subject><ispartof>NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10154377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10154377$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pelle, Istvan</creatorcontrib><creatorcontrib>Szoke, Bence</creatorcontrib><creatorcontrib>Fayad, Abdulhalim</creatorcontrib><creatorcontrib>Cinkler, Tibor</creatorcontrib><creatorcontrib>Toka, Laszlo</creatorcontrib><title>A Comprehensive Performance Analysis of Stream Processing with Kafka in Cloud Native Deployments for IoT Use-cases</title><title>NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium</title><addtitle>NOMS</addtitle><description>The constant growth of the number of Internet of Things devices drives a huge increase in data that needs to be analyzed, at times in real time. Multiple platforms are available for delivering such data to analytics engines that can perform various operations on the data with low processing latency. These platforms can find their home in cloud native environments where high availability and scaling to the actual workload can be easily achieved. While the deployment environment is elastic, clusters still need to be adequately dimensioned to accommodate the components of the platforms even under high load.In this paper, we provide an analysis in this regard: we discuss key performance indicators of the popular Kafka message bus and the related Kafka Streams processing engine. Namely, we analyze latency, throughput, CPU and memory resource footprint aspects of these services under varying load and processing tasks that appear in Internet of Things applications. We find subsecond processing latency and linear but heavily task-dependent scaling behavior in the other performance indicators' case.</description><subject>Cloud computing</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>Kafka</subject><subject>Kafka Streams</subject><subject>Key performance indicator</subject><subject>Performance analysis</subject><subject>Real-time systems</subject><subject>stream processing</subject><subject>Task analysis</subject><subject>Throughput</subject><issn>2374-9709</issn><isbn>9781665477161</isbn><isbn>1665477164</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo10NtOAjEUheFqYiIib2BiX2Bw9zRtLwmeiAgk4DXZDHukOgfSjhreXox6te6-ZP2MXQsYCgH-ZjZ_XprcSzeUINVQgDBaWXvCBt46kedGWytyccp6UlmdeQv-nF2k9AagLSjosTji47beR9pRk8In8QXFso01NgXxUYPVIYXE25Ivu0hY80VsC0opNK_8K3Q7_oTlO_LQ8HHVfmz5DLsf5Jb2VXuoqekSP2p80q74S6KswETpkp2VWCUa_G2fre7vVuPHbDp_mIxH0ywI4bus0Hlht9pZQANq4zauyD0QSnQIUioUJCVatwVx_A7amYK8QbCYm402qs-uftlAROt9DDXGw_o_kfoGwStbxA</recordid><startdate>20230508</startdate><enddate>20230508</enddate><creator>Pelle, Istvan</creator><creator>Szoke, Bence</creator><creator>Fayad, Abdulhalim</creator><creator>Cinkler, Tibor</creator><creator>Toka, Laszlo</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20230508</creationdate><title>A Comprehensive Performance Analysis of Stream Processing with Kafka in Cloud Native Deployments for IoT Use-cases</title><author>Pelle, Istvan ; Szoke, Bence ; Fayad, Abdulhalim ; Cinkler, Tibor ; Toka, Laszlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-c46c7d4870a503b8b8c690ea2a8a0223a1e22a78d010230485ce95a07a65b453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>Kafka</topic><topic>Kafka Streams</topic><topic>Key performance indicator</topic><topic>Performance analysis</topic><topic>Real-time systems</topic><topic>stream processing</topic><topic>Task analysis</topic><topic>Throughput</topic><toplevel>online_resources</toplevel><creatorcontrib>Pelle, Istvan</creatorcontrib><creatorcontrib>Szoke, Bence</creatorcontrib><creatorcontrib>Fayad, Abdulhalim</creatorcontrib><creatorcontrib>Cinkler, Tibor</creatorcontrib><creatorcontrib>Toka, Laszlo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pelle, Istvan</au><au>Szoke, Bence</au><au>Fayad, Abdulhalim</au><au>Cinkler, Tibor</au><au>Toka, Laszlo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Comprehensive Performance Analysis of Stream Processing with Kafka in Cloud Native Deployments for IoT Use-cases</atitle><btitle>NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium</btitle><stitle>NOMS</stitle><date>2023-05-08</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2374-9709</eissn><eisbn>9781665477161</eisbn><eisbn>1665477164</eisbn><abstract>The constant growth of the number of Internet of Things devices drives a huge increase in data that needs to be analyzed, at times in real time. Multiple platforms are available for delivering such data to analytics engines that can perform various operations on the data with low processing latency. These platforms can find their home in cloud native environments where high availability and scaling to the actual workload can be easily achieved. While the deployment environment is elastic, clusters still need to be adequately dimensioned to accommodate the components of the platforms even under high load.In this paper, we provide an analysis in this regard: we discuss key performance indicators of the popular Kafka message bus and the related Kafka Streams processing engine. Namely, we analyze latency, throughput, CPU and memory resource footprint aspects of these services under varying load and processing tasks that appear in Internet of Things applications. We find subsecond processing latency and linear but heavily task-dependent scaling behavior in the other performance indicators' case.</abstract><pub>IEEE</pub><doi>10.1109/NOMS56928.2023.10154377</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2374-9709 |
ispartof | NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, 2023, p.1-6 |
issn | 2374-9709 |
language | eng |
recordid | cdi_ieee_primary_10154377 |
source | IEEE Xplore All Conference Series |
subjects | Cloud computing Internet of Things IoT Kafka Kafka Streams Key performance indicator Performance analysis Real-time systems stream processing Task analysis Throughput |
title | A Comprehensive Performance Analysis of Stream Processing with Kafka in Cloud Native Deployments for IoT Use-cases |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Comprehensive%20Performance%20Analysis%20of%20Stream%20Processing%20with%20Kafka%20in%20Cloud%20Native%20Deployments%20for%20IoT%20Use-cases&rft.btitle=NOMS%202023-2023%20IEEE/IFIP%20Network%20Operations%20and%20Management%20Symposium&rft.au=Pelle,%20Istvan&rft.date=2023-05-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2374-9709&rft_id=info:doi/10.1109/NOMS56928.2023.10154377&rft.eisbn=9781665477161&rft.eisbn_list=1665477164&rft_dat=%3Cieee_CHZPO%3E10154377%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-c46c7d4870a503b8b8c690ea2a8a0223a1e22a78d010230485ce95a07a65b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10154377&rfr_iscdi=true |