Loading…

Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning

Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 2024-01, Vol.43 (1), p.1-1
Main Authors: Fu, Suzhong, Xu, Jing, Chang, Shilong, Yang, Luyao, Ling, Shuting, Cai, Jinghan, Chen, Jiayin, Yuan, Jiacheng, Cai, Ying, Zhang, Bei, Huang, Zicheng, Yang, Kun, Sui, Wenhai, Xue, Linyan, Zhao, Qingliang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3
cites cdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume 43
creator Fu, Suzhong
Xu, Jing
Chang, Shilong
Yang, Luyao
Ling, Shuting
Cai, Jinghan
Chen, Jiayin
Yuan, Jiacheng
Cai, Ying
Zhang, Bei
Huang, Zicheng
Yang, Kun
Sui, Wenhai
Xue, Linyan
Zhao, Qingliang
description Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.
doi_str_mv 10.1109/TMI.2023.3287200
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10155229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155229</ieee_id><sourcerecordid>2909271412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4Modl29exAJePEya37MTJKjlKqFiiAVvIWXzJtl2sxkmsy09r83y64ingIvn--Hx_sS8pqzHefMfLj-erkTTMidFFoJxp6QDW8aXYmm_vmUbJhQumKsFWfkRc43jPG6YeY5OZNKykaZZkPuvke35oXeQ_ZrgEQz7kecFliGONE-Jprggfo4zgF_0WGEPWYaexogY4Fn9LcBy_-0JCgaV8YdLckHhNvwSPM6Y7ofDsOAkKZh2r8kz3oIGV-d3i358eni-vxLdfXt8-X5x6vKy1ovlecSGgDpeqNdD70TWmtfG2Mctq3jXStR8x5aKV2t0XvWtaCU5FK5zoGTW_L-6J1TvFsxL3YcsscQYMK4Ziu0UIYbXQRb8u4_9CauaSrbWWGYEYrXXBSKHSmfYs4JezuncpD0aDmzhzpsqcMe6rCnOkrk7Um8uhG7v4E_9y_AmyMwIOI_vtKiEEb-BqiSkOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909271412</pqid></control><display><type>article</type><title>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</title><source>IEEE Xplore (Online service)</source><creator>Fu, Suzhong ; Xu, Jing ; Chang, Shilong ; Yang, Luyao ; Ling, Shuting ; Cai, Jinghan ; Chen, Jiayin ; Yuan, Jiacheng ; Cai, Ying ; Zhang, Bei ; Huang, Zicheng ; Yang, Kun ; Sui, Wenhai ; Xue, Linyan ; Zhao, Qingliang</creator><creatorcontrib>Fu, Suzhong ; Xu, Jing ; Chang, Shilong ; Yang, Luyao ; Ling, Shuting ; Cai, Jinghan ; Chen, Jiayin ; Yuan, Jiacheng ; Cai, Ying ; Zhang, Bei ; Huang, Zicheng ; Yang, Kun ; Sui, Wenhai ; Xue, Linyan ; Zhao, Qingliang</creatorcontrib><description>Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3287200</identifier><identifier>PMID: 37335795</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Artificial Intelligence ; Artificial neural networks ; Biomedical imaging ; Blood flow ; Complexity ; convolutional neural network (CNN) ; Datasets ; Deep learning ; Embolization ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging ; laser speckle contrast imaging (LSCI) ; Lasers ; Machine learning ; Medical imaging ; Microcirculation - physiology ; Neural networks ; Neural Networks, Computer ; Robustness ; Segmentation ; Speckle ; Supervised learning ; Supervised Machine Learning ; Teaching methods ; Temporal resolution ; vascular segmentation ; weakly supervised learning</subject><ispartof>IEEE transactions on medical imaging, 2024-01, Vol.43 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</citedby><cites>FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</cites><orcidid>0000-0003-2553-7413 ; 0009-0008-3256-3226 ; 0000-0001-6114-0443 ; 0000-0002-5753-0120 ; 0009-0009-7549-5849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37335795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Suzhong</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Chang, Shilong</creatorcontrib><creatorcontrib>Yang, Luyao</creatorcontrib><creatorcontrib>Ling, Shuting</creatorcontrib><creatorcontrib>Cai, Jinghan</creatorcontrib><creatorcontrib>Chen, Jiayin</creatorcontrib><creatorcontrib>Yuan, Jiacheng</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Huang, Zicheng</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sui, Wenhai</creatorcontrib><creatorcontrib>Xue, Linyan</creatorcontrib><creatorcontrib>Zhao, Qingliang</creatorcontrib><title>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.</description><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Blood flow</subject><subject>Complexity</subject><subject>convolutional neural network (CNN)</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Embolization</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>laser speckle contrast imaging (LSCI)</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Microcirculation - physiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Speckle</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Teaching methods</subject><subject>Temporal resolution</subject><subject>vascular segmentation</subject><subject>weakly supervised learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEUx4Modl29exAJePEya37MTJKjlKqFiiAVvIWXzJtl2sxkmsy09r83y64ingIvn--Hx_sS8pqzHefMfLj-erkTTMidFFoJxp6QDW8aXYmm_vmUbJhQumKsFWfkRc43jPG6YeY5OZNKykaZZkPuvke35oXeQ_ZrgEQz7kecFliGONE-Jprggfo4zgF_0WGEPWYaexogY4Fn9LcBy_-0JCgaV8YdLckHhNvwSPM6Y7ofDsOAkKZh2r8kz3oIGV-d3i358eni-vxLdfXt8-X5x6vKy1ovlecSGgDpeqNdD70TWmtfG2Mctq3jXStR8x5aKV2t0XvWtaCU5FK5zoGTW_L-6J1TvFsxL3YcsscQYMK4Ziu0UIYbXQRb8u4_9CauaSrbWWGYEYrXXBSKHSmfYs4JezuncpD0aDmzhzpsqcMe6rCnOkrk7Um8uhG7v4E_9y_AmyMwIOI_vtKiEEb-BqiSkOY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Fu, Suzhong</creator><creator>Xu, Jing</creator><creator>Chang, Shilong</creator><creator>Yang, Luyao</creator><creator>Ling, Shuting</creator><creator>Cai, Jinghan</creator><creator>Chen, Jiayin</creator><creator>Yuan, Jiacheng</creator><creator>Cai, Ying</creator><creator>Zhang, Bei</creator><creator>Huang, Zicheng</creator><creator>Yang, Kun</creator><creator>Sui, Wenhai</creator><creator>Xue, Linyan</creator><creator>Zhao, Qingliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2553-7413</orcidid><orcidid>https://orcid.org/0009-0008-3256-3226</orcidid><orcidid>https://orcid.org/0000-0001-6114-0443</orcidid><orcidid>https://orcid.org/0000-0002-5753-0120</orcidid><orcidid>https://orcid.org/0009-0009-7549-5849</orcidid></search><sort><creationdate>20240101</creationdate><title>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</title><author>Fu, Suzhong ; Xu, Jing ; Chang, Shilong ; Yang, Luyao ; Ling, Shuting ; Cai, Jinghan ; Chen, Jiayin ; Yuan, Jiacheng ; Cai, Ying ; Zhang, Bei ; Huang, Zicheng ; Yang, Kun ; Sui, Wenhai ; Xue, Linyan ; Zhao, Qingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Blood flow</topic><topic>Complexity</topic><topic>convolutional neural network (CNN)</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Embolization</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>laser speckle contrast imaging (LSCI)</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Microcirculation - physiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Speckle</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Teaching methods</topic><topic>Temporal resolution</topic><topic>vascular segmentation</topic><topic>weakly supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Suzhong</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Chang, Shilong</creatorcontrib><creatorcontrib>Yang, Luyao</creatorcontrib><creatorcontrib>Ling, Shuting</creatorcontrib><creatorcontrib>Cai, Jinghan</creatorcontrib><creatorcontrib>Chen, Jiayin</creatorcontrib><creatorcontrib>Yuan, Jiacheng</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Huang, Zicheng</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sui, Wenhai</creatorcontrib><creatorcontrib>Xue, Linyan</creatorcontrib><creatorcontrib>Zhao, Qingliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Suzhong</au><au>Xu, Jing</au><au>Chang, Shilong</au><au>Yang, Luyao</au><au>Ling, Shuting</au><au>Cai, Jinghan</au><au>Chen, Jiayin</au><au>Yuan, Jiacheng</au><au>Cai, Ying</au><au>Zhang, Bei</au><au>Huang, Zicheng</au><au>Yang, Kun</au><au>Sui, Wenhai</au><au>Xue, Linyan</au><au>Zhao, Qingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37335795</pmid><doi>10.1109/TMI.2023.3287200</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2553-7413</orcidid><orcidid>https://orcid.org/0009-0008-3256-3226</orcidid><orcidid>https://orcid.org/0000-0001-6114-0443</orcidid><orcidid>https://orcid.org/0000-0002-5753-0120</orcidid><orcidid>https://orcid.org/0009-0009-7549-5849</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-01, Vol.43 (1), p.1-1
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_ieee_primary_10155229
source IEEE Xplore (Online service)
subjects Annotations
Artificial Intelligence
Artificial neural networks
Biomedical imaging
Blood flow
Complexity
convolutional neural network (CNN)
Datasets
Deep learning
Embolization
Image contrast
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
laser speckle contrast imaging (LSCI)
Lasers
Machine learning
Medical imaging
Microcirculation - physiology
Neural networks
Neural Networks, Computer
Robustness
Segmentation
Speckle
Supervised learning
Supervised Machine Learning
Teaching methods
Temporal resolution
vascular segmentation
weakly supervised learning
title Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20vascular%20segmentation%20for%20raw%20complex%20images%20of%20laser%20speckle%20contrast%20based%20on%20weakly%20supervised%20learning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Fu,%20Suzhong&rft.date=2024-01-01&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3287200&rft_dat=%3Cproquest_ieee_%3E2909271412%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909271412&rft_id=info:pmid/37335795&rft_ieee_id=10155229&rfr_iscdi=true