Loading…
Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning
Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to...
Saved in:
Published in: | IEEE transactions on medical imaging 2024-01, Vol.43 (1), p.1-1 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3 |
container_end_page | 1 |
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on medical imaging |
container_volume | 43 |
creator | Fu, Suzhong Xu, Jing Chang, Shilong Yang, Luyao Ling, Shuting Cai, Jinghan Chen, Jiayin Yuan, Jiacheng Cai, Ying Zhang, Bei Huang, Zicheng Yang, Kun Sui, Wenhai Xue, Linyan Zhao, Qingliang |
description | Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis. |
doi_str_mv | 10.1109/TMI.2023.3287200 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10155229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10155229</ieee_id><sourcerecordid>2909271412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</originalsourceid><addsrcrecordid>eNpdkc9rFDEUx4Modl29exAJePEya37MTJKjlKqFiiAVvIWXzJtl2sxkmsy09r83y64ingIvn--Hx_sS8pqzHefMfLj-erkTTMidFFoJxp6QDW8aXYmm_vmUbJhQumKsFWfkRc43jPG6YeY5OZNKykaZZkPuvke35oXeQ_ZrgEQz7kecFliGONE-Jprggfo4zgF_0WGEPWYaexogY4Fn9LcBy_-0JCgaV8YdLckHhNvwSPM6Y7ofDsOAkKZh2r8kz3oIGV-d3i358eni-vxLdfXt8-X5x6vKy1ovlecSGgDpeqNdD70TWmtfG2Mctq3jXStR8x5aKV2t0XvWtaCU5FK5zoGTW_L-6J1TvFsxL3YcsscQYMK4Ziu0UIYbXQRb8u4_9CauaSrbWWGYEYrXXBSKHSmfYs4JezuncpD0aDmzhzpsqcMe6rCnOkrk7Um8uhG7v4E_9y_AmyMwIOI_vtKiEEb-BqiSkOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909271412</pqid></control><display><type>article</type><title>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</title><source>IEEE Xplore (Online service)</source><creator>Fu, Suzhong ; Xu, Jing ; Chang, Shilong ; Yang, Luyao ; Ling, Shuting ; Cai, Jinghan ; Chen, Jiayin ; Yuan, Jiacheng ; Cai, Ying ; Zhang, Bei ; Huang, Zicheng ; Yang, Kun ; Sui, Wenhai ; Xue, Linyan ; Zhao, Qingliang</creator><creatorcontrib>Fu, Suzhong ; Xu, Jing ; Chang, Shilong ; Yang, Luyao ; Ling, Shuting ; Cai, Jinghan ; Chen, Jiayin ; Yuan, Jiacheng ; Cai, Ying ; Zhang, Bei ; Huang, Zicheng ; Yang, Kun ; Sui, Wenhai ; Xue, Linyan ; Zhao, Qingliang</creatorcontrib><description>Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2023.3287200</identifier><identifier>PMID: 37335795</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Artificial Intelligence ; Artificial neural networks ; Biomedical imaging ; Blood flow ; Complexity ; convolutional neural network (CNN) ; Datasets ; Deep learning ; Embolization ; Image contrast ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging ; laser speckle contrast imaging (LSCI) ; Lasers ; Machine learning ; Medical imaging ; Microcirculation - physiology ; Neural networks ; Neural Networks, Computer ; Robustness ; Segmentation ; Speckle ; Supervised learning ; Supervised Machine Learning ; Teaching methods ; Temporal resolution ; vascular segmentation ; weakly supervised learning</subject><ispartof>IEEE transactions on medical imaging, 2024-01, Vol.43 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</citedby><cites>FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</cites><orcidid>0000-0003-2553-7413 ; 0009-0008-3256-3226 ; 0000-0001-6114-0443 ; 0000-0002-5753-0120 ; 0009-0009-7549-5849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10155229$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37335795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Suzhong</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Chang, Shilong</creatorcontrib><creatorcontrib>Yang, Luyao</creatorcontrib><creatorcontrib>Ling, Shuting</creatorcontrib><creatorcontrib>Cai, Jinghan</creatorcontrib><creatorcontrib>Chen, Jiayin</creatorcontrib><creatorcontrib>Yuan, Jiacheng</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Huang, Zicheng</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sui, Wenhai</creatorcontrib><creatorcontrib>Xue, Linyan</creatorcontrib><creatorcontrib>Zhao, Qingliang</creatorcontrib><title>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.</description><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biomedical imaging</subject><subject>Blood flow</subject><subject>Complexity</subject><subject>convolutional neural network (CNN)</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Embolization</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>laser speckle contrast imaging (LSCI)</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Microcirculation - physiology</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Robustness</subject><subject>Segmentation</subject><subject>Speckle</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Teaching methods</subject><subject>Temporal resolution</subject><subject>vascular segmentation</subject><subject>weakly supervised learning</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEUx4Modl29exAJePEya37MTJKjlKqFiiAVvIWXzJtl2sxkmsy09r83y64ingIvn--Hx_sS8pqzHefMfLj-erkTTMidFFoJxp6QDW8aXYmm_vmUbJhQumKsFWfkRc43jPG6YeY5OZNKykaZZkPuvke35oXeQ_ZrgEQz7kecFliGONE-Jprggfo4zgF_0WGEPWYaexogY4Fn9LcBy_-0JCgaV8YdLckHhNvwSPM6Y7ofDsOAkKZh2r8kz3oIGV-d3i358eni-vxLdfXt8-X5x6vKy1ovlecSGgDpeqNdD70TWmtfG2Mctq3jXStR8x5aKV2t0XvWtaCU5FK5zoGTW_L-6J1TvFsxL3YcsscQYMK4Ziu0UIYbXQRb8u4_9CauaSrbWWGYEYrXXBSKHSmfYs4JezuncpD0aDmzhzpsqcMe6rCnOkrk7Um8uhG7v4E_9y_AmyMwIOI_vtKiEEb-BqiSkOY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Fu, Suzhong</creator><creator>Xu, Jing</creator><creator>Chang, Shilong</creator><creator>Yang, Luyao</creator><creator>Ling, Shuting</creator><creator>Cai, Jinghan</creator><creator>Chen, Jiayin</creator><creator>Yuan, Jiacheng</creator><creator>Cai, Ying</creator><creator>Zhang, Bei</creator><creator>Huang, Zicheng</creator><creator>Yang, Kun</creator><creator>Sui, Wenhai</creator><creator>Xue, Linyan</creator><creator>Zhao, Qingliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2553-7413</orcidid><orcidid>https://orcid.org/0009-0008-3256-3226</orcidid><orcidid>https://orcid.org/0000-0001-6114-0443</orcidid><orcidid>https://orcid.org/0000-0002-5753-0120</orcidid><orcidid>https://orcid.org/0009-0009-7549-5849</orcidid></search><sort><creationdate>20240101</creationdate><title>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</title><author>Fu, Suzhong ; Xu, Jing ; Chang, Shilong ; Yang, Luyao ; Ling, Shuting ; Cai, Jinghan ; Chen, Jiayin ; Yuan, Jiacheng ; Cai, Ying ; Zhang, Bei ; Huang, Zicheng ; Yang, Kun ; Sui, Wenhai ; Xue, Linyan ; Zhao, Qingliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biomedical imaging</topic><topic>Blood flow</topic><topic>Complexity</topic><topic>convolutional neural network (CNN)</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Embolization</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>laser speckle contrast imaging (LSCI)</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Microcirculation - physiology</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Robustness</topic><topic>Segmentation</topic><topic>Speckle</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Teaching methods</topic><topic>Temporal resolution</topic><topic>vascular segmentation</topic><topic>weakly supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Suzhong</creatorcontrib><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Chang, Shilong</creatorcontrib><creatorcontrib>Yang, Luyao</creatorcontrib><creatorcontrib>Ling, Shuting</creatorcontrib><creatorcontrib>Cai, Jinghan</creatorcontrib><creatorcontrib>Chen, Jiayin</creatorcontrib><creatorcontrib>Yuan, Jiacheng</creatorcontrib><creatorcontrib>Cai, Ying</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Huang, Zicheng</creatorcontrib><creatorcontrib>Yang, Kun</creatorcontrib><creatorcontrib>Sui, Wenhai</creatorcontrib><creatorcontrib>Xue, Linyan</creatorcontrib><creatorcontrib>Zhao, Qingliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Suzhong</au><au>Xu, Jing</au><au>Chang, Shilong</au><au>Yang, Luyao</au><au>Ling, Shuting</au><au>Cai, Jinghan</au><au>Chen, Jiayin</au><au>Yuan, Jiacheng</au><au>Cai, Ying</au><au>Zhang, Bei</au><au>Huang, Zicheng</au><au>Yang, Kun</au><au>Sui, Wenhai</au><au>Xue, Linyan</au><au>Zhao, Qingliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>43</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Laser speckle contrast imaging (LSCI) is widely used for in vivo real-time detection and analysis of local blood flow microcirculation due to its non-invasive ability and excellent spatial and temporal resolution. However, vascular segmentation of LSCI images still faces a lot of difficulties due to numerous specific noises caused by the complexity of blood microcirculation's structure and irregular vascular aberrations in diseased regions. In addition, the difficulties of LSCI image data annotation have hindered the application of deep learning methods based on supervised learning in the field of LSCI image vascular segmentation. To tackle these difficulties, we propose a robust weakly supervised learning method, which selects the threshold combinations and processing flows instead of labor-intensive annotation work to construct the ground truth of the dataset, and design a deep neural network, FURNet, based on UNet++ and ResNeXt. The model obtained from training achieves high-quality vascular segmentation and captures multi-scene vascular features on both constructed and unknown datasets with good generalization. Furthermore, we intravital verified the availability of this method on a tumor before and after embolization treatment. This work provides a new approach for realizing LSCI vascular segmentation and also makes a new application-level advance in the field of artificial intelligence-assisted disease diagnosis.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37335795</pmid><doi>10.1109/TMI.2023.3287200</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2553-7413</orcidid><orcidid>https://orcid.org/0009-0008-3256-3226</orcidid><orcidid>https://orcid.org/0000-0001-6114-0443</orcidid><orcidid>https://orcid.org/0000-0002-5753-0120</orcidid><orcidid>https://orcid.org/0009-0009-7549-5849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2024-01, Vol.43 (1), p.1-1 |
issn | 0278-0062 1558-254X 1558-254X |
language | eng |
recordid | cdi_ieee_primary_10155229 |
source | IEEE Xplore (Online service) |
subjects | Annotations Artificial Intelligence Artificial neural networks Biomedical imaging Blood flow Complexity convolutional neural network (CNN) Datasets Deep learning Embolization Image contrast Image processing Image Processing, Computer-Assisted - methods Image segmentation Imaging laser speckle contrast imaging (LSCI) Lasers Machine learning Medical imaging Microcirculation - physiology Neural networks Neural Networks, Computer Robustness Segmentation Speckle Supervised learning Supervised Machine Learning Teaching methods Temporal resolution vascular segmentation weakly supervised learning |
title | Robust vascular segmentation for raw complex images of laser speckle contrast based on weakly supervised learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A05%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20vascular%20segmentation%20for%20raw%20complex%20images%20of%20laser%20speckle%20contrast%20based%20on%20weakly%20supervised%20learning&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Fu,%20Suzhong&rft.date=2024-01-01&rft.volume=43&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2023.3287200&rft_dat=%3Cproquest_ieee_%3E2909271412%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-c13a5aa3bf98bfafb2888c4999be66b1d63e81fa633b48ecc0d6a773137bdbab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2909271412&rft_id=info:pmid/37335795&rft_ieee_id=10155229&rfr_iscdi=true |