Loading…

An RGB-D Semantic Map Building and Global Localization Method

Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point...

Full description

Saved in:
Bibliographic Details
Main Authors: Fu, Tianqi, Tian, Facun, Ma, Lei, Sun, Yongkui
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 984
container_issue
container_start_page 979
container_title
container_volume
creator Fu, Tianqi
Tian, Facun
Ma, Lei
Sun, Yongkui
description Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.
doi_str_mv 10.1109/DDCLS58216.2023.10167214
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10167214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10167214</ieee_id><sourcerecordid>10167214</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-9a83b3a2c9bb1f2fefa053dab5ccb5c92effc973116f73a334901363b7528ca83</originalsourceid><addsrcrecordid>eNo1j8FOwzAQRA0SElXpH3DwDyTsems7PnBoGyhIqZAonKuNY4NRmlRtOMDXEwk4jOb0Rm-EkAg5IribslxVW10oNLkCRTkCGqtwfiZmzrqCNJBC0HAuJsoam7nC4KWYnU4fAKA0knE0EbeLTj6vl1kpt2HP3ZC83PBBLj9T26TuTXLXyHXb19zKqvfcpm8eUt_JTRje--ZKXERuT2H211Pxen_3snrIqqf142pRZUnBfMgcF1QTK-_qGqOKITJoarjW3o9xKsTonSVEEy0x0dzB6Ee11arwIzwV17-7KYSwOxzTno9fu__H9ANdsUlz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An RGB-D Semantic Map Building and Global Localization Method</title><source>IEEE Xplore All Conference Series</source><creator>Fu, Tianqi ; Tian, Facun ; Ma, Lei ; Sun, Yongkui</creator><creatorcontrib>Fu, Tianqi ; Tian, Facun ; Ma, Lei ; Sun, Yongkui</creatorcontrib><description>Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.</description><identifier>EISSN: 2767-9861</identifier><identifier>EISBN: 9798350321050</identifier><identifier>DOI: 10.1109/DDCLS58216.2023.10167214</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Global Localization ; Location awareness ; Point cloud compression ; Pose estimation ; RGB-D ; Semantic Map ; Semantics ; Simultaneous localization and mapping ; Visual SLAM ; Visualization</subject><ispartof>2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), 2023, p.979-984</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10167214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10167214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Tianqi</creatorcontrib><creatorcontrib>Tian, Facun</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Sun, Yongkui</creatorcontrib><title>An RGB-D Semantic Map Building and Global Localization Method</title><title>2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)</title><addtitle>DDCLS</addtitle><description>Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.</description><subject>Buildings</subject><subject>Global Localization</subject><subject>Location awareness</subject><subject>Point cloud compression</subject><subject>Pose estimation</subject><subject>RGB-D</subject><subject>Semantic Map</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Visual SLAM</subject><subject>Visualization</subject><issn>2767-9861</issn><isbn>9798350321050</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FOwzAQRA0SElXpH3DwDyTsems7PnBoGyhIqZAonKuNY4NRmlRtOMDXEwk4jOb0Rm-EkAg5IribslxVW10oNLkCRTkCGqtwfiZmzrqCNJBC0HAuJsoam7nC4KWYnU4fAKA0knE0EbeLTj6vl1kpt2HP3ZC83PBBLj9T26TuTXLXyHXb19zKqvfcpm8eUt_JTRje--ZKXERuT2H211Pxen_3snrIqqf142pRZUnBfMgcF1QTK-_qGqOKITJoarjW3o9xKsTonSVEEy0x0dzB6Ee11arwIzwV17-7KYSwOxzTno9fu__H9ANdsUlz</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Fu, Tianqi</creator><creator>Tian, Facun</creator><creator>Ma, Lei</creator><creator>Sun, Yongkui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230512</creationdate><title>An RGB-D Semantic Map Building and Global Localization Method</title><author>Fu, Tianqi ; Tian, Facun ; Ma, Lei ; Sun, Yongkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-9a83b3a2c9bb1f2fefa053dab5ccb5c92effc973116f73a334901363b7528ca83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Buildings</topic><topic>Global Localization</topic><topic>Location awareness</topic><topic>Point cloud compression</topic><topic>Pose estimation</topic><topic>RGB-D</topic><topic>Semantic Map</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Visual SLAM</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Tianqi</creatorcontrib><creatorcontrib>Tian, Facun</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Sun, Yongkui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Tianqi</au><au>Tian, Facun</au><au>Ma, Lei</au><au>Sun, Yongkui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An RGB-D Semantic Map Building and Global Localization Method</atitle><btitle>2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)</btitle><stitle>DDCLS</stitle><date>2023-05-12</date><risdate>2023</risdate><spage>979</spage><epage>984</epage><pages>979-984</pages><eissn>2767-9861</eissn><eisbn>9798350321050</eisbn><abstract>Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.</abstract><pub>IEEE</pub><doi>10.1109/DDCLS58216.2023.10167214</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2767-9861
ispartof 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), 2023, p.979-984
issn 2767-9861
language eng
recordid cdi_ieee_primary_10167214
source IEEE Xplore All Conference Series
subjects Buildings
Global Localization
Location awareness
Point cloud compression
Pose estimation
RGB-D
Semantic Map
Semantics
Simultaneous localization and mapping
Visual SLAM
Visualization
title An RGB-D Semantic Map Building and Global Localization Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T21%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20RGB-D%20Semantic%20Map%20Building%20and%20Global%20Localization%20Method&rft.btitle=2023%20IEEE%2012th%20Data%20Driven%20Control%20and%20Learning%20Systems%20Conference%20(DDCLS)&rft.au=Fu,%20Tianqi&rft.date=2023-05-12&rft.spage=979&rft.epage=984&rft.pages=979-984&rft.eissn=2767-9861&rft_id=info:doi/10.1109/DDCLS58216.2023.10167214&rft.eisbn=9798350321050&rft_dat=%3Cieee_CHZPO%3E10167214%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-9a83b3a2c9bb1f2fefa053dab5ccb5c92effc973116f73a334901363b7528ca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10167214&rfr_iscdi=true