Loading…
An RGB-D Semantic Map Building and Global Localization Method
Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 984 |
container_issue | |
container_start_page | 979 |
container_title | |
container_volume | |
creator | Fu, Tianqi Tian, Facun Ma, Lei Sun, Yongkui |
description | Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm. |
doi_str_mv | 10.1109/DDCLS58216.2023.10167214 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10167214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10167214</ieee_id><sourcerecordid>10167214</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-9a83b3a2c9bb1f2fefa053dab5ccb5c92effc973116f73a334901363b7528ca83</originalsourceid><addsrcrecordid>eNo1j8FOwzAQRA0SElXpH3DwDyTsems7PnBoGyhIqZAonKuNY4NRmlRtOMDXEwk4jOb0Rm-EkAg5IribslxVW10oNLkCRTkCGqtwfiZmzrqCNJBC0HAuJsoam7nC4KWYnU4fAKA0knE0EbeLTj6vl1kpt2HP3ZC83PBBLj9T26TuTXLXyHXb19zKqvfcpm8eUt_JTRje--ZKXERuT2H211Pxen_3snrIqqf142pRZUnBfMgcF1QTK-_qGqOKITJoarjW3o9xKsTonSVEEy0x0dzB6Ee11arwIzwV17-7KYSwOxzTno9fu__H9ANdsUlz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An RGB-D Semantic Map Building and Global Localization Method</title><source>IEEE Xplore All Conference Series</source><creator>Fu, Tianqi ; Tian, Facun ; Ma, Lei ; Sun, Yongkui</creator><creatorcontrib>Fu, Tianqi ; Tian, Facun ; Ma, Lei ; Sun, Yongkui</creatorcontrib><description>Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.</description><identifier>EISSN: 2767-9861</identifier><identifier>EISBN: 9798350321050</identifier><identifier>DOI: 10.1109/DDCLS58216.2023.10167214</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; Global Localization ; Location awareness ; Point cloud compression ; Pose estimation ; RGB-D ; Semantic Map ; Semantics ; Simultaneous localization and mapping ; Visual SLAM ; Visualization</subject><ispartof>2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), 2023, p.979-984</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10167214$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27901,54529,54906</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10167214$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fu, Tianqi</creatorcontrib><creatorcontrib>Tian, Facun</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Sun, Yongkui</creatorcontrib><title>An RGB-D Semantic Map Building and Global Localization Method</title><title>2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)</title><addtitle>DDCLS</addtitle><description>Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.</description><subject>Buildings</subject><subject>Global Localization</subject><subject>Location awareness</subject><subject>Point cloud compression</subject><subject>Pose estimation</subject><subject>RGB-D</subject><subject>Semantic Map</subject><subject>Semantics</subject><subject>Simultaneous localization and mapping</subject><subject>Visual SLAM</subject><subject>Visualization</subject><issn>2767-9861</issn><isbn>9798350321050</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FOwzAQRA0SElXpH3DwDyTsems7PnBoGyhIqZAonKuNY4NRmlRtOMDXEwk4jOb0Rm-EkAg5IribslxVW10oNLkCRTkCGqtwfiZmzrqCNJBC0HAuJsoam7nC4KWYnU4fAKA0knE0EbeLTj6vl1kpt2HP3ZC83PBBLj9T26TuTXLXyHXb19zKqvfcpm8eUt_JTRje--ZKXERuT2H211Pxen_3snrIqqf142pRZUnBfMgcF1QTK-_qGqOKITJoarjW3o9xKsTonSVEEy0x0dzB6Ee11arwIzwV17-7KYSwOxzTno9fu__H9ANdsUlz</recordid><startdate>20230512</startdate><enddate>20230512</enddate><creator>Fu, Tianqi</creator><creator>Tian, Facun</creator><creator>Ma, Lei</creator><creator>Sun, Yongkui</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230512</creationdate><title>An RGB-D Semantic Map Building and Global Localization Method</title><author>Fu, Tianqi ; Tian, Facun ; Ma, Lei ; Sun, Yongkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-9a83b3a2c9bb1f2fefa053dab5ccb5c92effc973116f73a334901363b7528ca83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Buildings</topic><topic>Global Localization</topic><topic>Location awareness</topic><topic>Point cloud compression</topic><topic>Pose estimation</topic><topic>RGB-D</topic><topic>Semantic Map</topic><topic>Semantics</topic><topic>Simultaneous localization and mapping</topic><topic>Visual SLAM</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Tianqi</creatorcontrib><creatorcontrib>Tian, Facun</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Sun, Yongkui</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fu, Tianqi</au><au>Tian, Facun</au><au>Ma, Lei</au><au>Sun, Yongkui</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An RGB-D Semantic Map Building and Global Localization Method</atitle><btitle>2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)</btitle><stitle>DDCLS</stitle><date>2023-05-12</date><risdate>2023</risdate><spage>979</spage><epage>984</epage><pages>979-984</pages><eissn>2767-9861</eissn><eisbn>9798350321050</eisbn><abstract>Aiming at the shortcomings of indoor visual SLAM system such as lack of environment awareness, sparse map construction, low global positioning accuracy and poor robustness, this paper proposes a semantic map building and global positioning method based on visual semantic descriptors and dense point cloud map. Abstract semantic descriptors are extracted and keyframe dense point cloud map is built by real-time object detection of color images. Global positioning adopts the off-line positioning method combining coarse and fine tuning. By quickly comparing the similarity between descriptors in the map set, the most similar reference keyframe is selected from the keyframe map, and the pose is obtained as the rough estimation result. The iterative calculation is continued in the dense point cloud map to complete the off-line positioning. In this paper, an available semantic mapping and positioning system is constructed and tested on the public RGB-D sequence dataset. The result shows that the proposed method can generate high-quality indoor point cloud maps and also finish global localization with higher accuracy and better robustness than the classical algorithm.</abstract><pub>IEEE</pub><doi>10.1109/DDCLS58216.2023.10167214</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2767-9861 |
ispartof | 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), 2023, p.979-984 |
issn | 2767-9861 |
language | eng |
recordid | cdi_ieee_primary_10167214 |
source | IEEE Xplore All Conference Series |
subjects | Buildings Global Localization Location awareness Point cloud compression Pose estimation RGB-D Semantic Map Semantics Simultaneous localization and mapping Visual SLAM Visualization |
title | An RGB-D Semantic Map Building and Global Localization Method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T21%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20RGB-D%20Semantic%20Map%20Building%20and%20Global%20Localization%20Method&rft.btitle=2023%20IEEE%2012th%20Data%20Driven%20Control%20and%20Learning%20Systems%20Conference%20(DDCLS)&rft.au=Fu,%20Tianqi&rft.date=2023-05-12&rft.spage=979&rft.epage=984&rft.pages=979-984&rft.eissn=2767-9861&rft_id=info:doi/10.1109/DDCLS58216.2023.10167214&rft.eisbn=9798350321050&rft_dat=%3Cieee_CHZPO%3E10167214%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-9a83b3a2c9bb1f2fefa053dab5ccb5c92effc973116f73a334901363b7528ca83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10167214&rfr_iscdi=true |