Loading…

PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud

Big data and bursting cloud computing technologies have facilitated an increasing trend of outsourcing data-driven services to the cloud, where the reverse kNN (RkNN) query is a popularly outsourced query service. The RkNN query aims to retrieve objects having the query object as kNN and widely appl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dependable and secure computing 2024-07, Vol.21 (4), p.1831-1844
Main Authors: Zheng, Yandong, Zhu, Hui, Lu, Rongxing, Guan, Yunguo, Zhang, Songnian, Wang, Fengwei, Shao, Jun, Li, Hui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1844
container_issue 4
container_start_page 1831
container_title IEEE transactions on dependable and secure computing
container_volume 21
creator Zheng, Yandong
Zhu, Hui
Lu, Rongxing
Guan, Yunguo
Zhang, Songnian
Wang, Fengwei
Shao, Jun
Li, Hui
description Big data and bursting cloud computing technologies have facilitated an increasing trend of outsourcing data-driven services to the cloud, where the reverse kNN (RkNN) query is a popularly outsourced query service. The RkNN query aims to retrieve objects having the query object as kNN and widely applied in the product recommendation. Considering privacy concerns, the outsourced query services are demanded to protect data privacy, and consequently a series of privacy-preserving query solutions have been put forth. Nevertheless, RkNN query over high-dimensional data has not been studied to date. In this work, we design the first efficient and privacy-preserving RkNN query scheme over encrypted high-dimensional data, named PHRkNN. Specifically, we first introduce a pivot filter condition for the RkNN query and utilize it to deliberately design a pivot filter R-tree (PFR-tree) to organize the high-dimensional dataset such that the RkNN query has sublinear query efficiency. Then, we propose our PHRkNN scheme by designing some homomorphic encryption based private algorithms and applying them to privately achieve PFR-tree based RkNN query. After that, we propose an oblivious PHRkNN scheme on the basis of the PHRkNN scheme by designing a private random tree permutation (PRTP) algorithm to protect the access pattern privacy. The security of our PHRkNN scheme and oblivious PHRkNN scheme is proved by the simulation-based security analysis. The performance is verified through computational costs and communication overheads evaluation.
doi_str_mv 10.1109/TDSC.2023.3291715
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10172058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10172058</ieee_id><sourcerecordid>3078104374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-c5153055a36aa47a4395990958d5fabaf93493fc89a9a249d74f70a30b6f5cb93</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9pNuvZkFxYQAIl5tht0Wi7Cr7S4J_94lcPA0bybPO5k8CN1S0qOU6IfF4D3rMcJ4jzNNFZVnqEO1oAkhND1vsxQykVrRS3QV45oQJlItOuhzNpp_TyaPeOicz70tawxlgWfB7yDfJ7Ngow07X67w3O5siBa3NH5rbNjjabvAI7_6SgZ-a8voqxI2eAA1YF_ibFM1xTW6cLCJ9uY0u-jjebjIRsl4-vKaPY2TnIl-neSSSk6kBN4HEAoE11JromVaSAdLcJoLzV2eatDAhC6UcIoAJ8u-k_lS8y66P979CdVvY2Nt1lUT2nei4USllAiuREvRI5WHKsZgnfkJfgthbygxB43moNEcNJqTxrZzd-x4a-0_nipGZMr_AKQRbOc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3078104374</pqid></control><display><type>article</type><title>PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud</title><source>IEEE Xplore (Online service)</source><creator>Zheng, Yandong ; Zhu, Hui ; Lu, Rongxing ; Guan, Yunguo ; Zhang, Songnian ; Wang, Fengwei ; Shao, Jun ; Li, Hui</creator><creatorcontrib>Zheng, Yandong ; Zhu, Hui ; Lu, Rongxing ; Guan, Yunguo ; Zhang, Songnian ; Wang, Fengwei ; Shao, Jun ; Li, Hui</creatorcontrib><description>Big data and bursting cloud computing technologies have facilitated an increasing trend of outsourcing data-driven services to the cloud, where the reverse kNN (RkNN) query is a popularly outsourced query service. The RkNN query aims to retrieve objects having the query object as kNN and widely applied in the product recommendation. Considering privacy concerns, the outsourced query services are demanded to protect data privacy, and consequently a series of privacy-preserving query solutions have been put forth. Nevertheless, RkNN query over high-dimensional data has not been studied to date. In this work, we design the first efficient and privacy-preserving RkNN query scheme over encrypted high-dimensional data, named PHRkNN. Specifically, we first introduce a pivot filter condition for the RkNN query and utilize it to deliberately design a pivot filter R-tree (PFR-tree) to organize the high-dimensional dataset such that the RkNN query has sublinear query efficiency. Then, we propose our PHRkNN scheme by designing some homomorphic encryption based private algorithms and applying them to privately achieve PFR-tree based RkNN query. After that, we propose an oblivious PHRkNN scheme on the basis of the PHRkNN scheme by designing a private random tree permutation (PRTP) algorithm to protect the access pattern privacy. The security of our PHRkNN scheme and oblivious PHRkNN scheme is proved by the simulation-based security analysis. The performance is verified through computational costs and communication overheads evaluation.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2023.3291715</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Algorithms ; Big Data ; Cloud computing ; Computational efficiency ; Cost analysis ; Cryptography ; Cybersecurity ; Data privacy ; Encryption ; high-dimensional data ; Homomorphic encryption ; Outsourcing ; Pattern analysis ; Permutations ; pivot filter condition ; Privacy ; privacy-preserving ; Queries ; reverse kNN query ; Servers</subject><ispartof>IEEE transactions on dependable and secure computing, 2024-07, Vol.21 (4), p.1831-1844</ispartof><rights>Copyright IEEE Computer Society 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0558-4485 ; 0000-0002-3965-3389 ; 0000-0002-5853-633X ; 0000-0001-5720-0941 ; 0000-0002-6886-8258 ; 0000-0001-8310-7169 ; 0000-0001-8352-0973 ; 0000-0003-4534-5670</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10172058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zheng, Yandong</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Lu, Rongxing</creatorcontrib><creatorcontrib>Guan, Yunguo</creatorcontrib><creatorcontrib>Zhang, Songnian</creatorcontrib><creatorcontrib>Wang, Fengwei</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><title>PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Big data and bursting cloud computing technologies have facilitated an increasing trend of outsourcing data-driven services to the cloud, where the reverse kNN (RkNN) query is a popularly outsourced query service. The RkNN query aims to retrieve objects having the query object as kNN and widely applied in the product recommendation. Considering privacy concerns, the outsourced query services are demanded to protect data privacy, and consequently a series of privacy-preserving query solutions have been put forth. Nevertheless, RkNN query over high-dimensional data has not been studied to date. In this work, we design the first efficient and privacy-preserving RkNN query scheme over encrypted high-dimensional data, named PHRkNN. Specifically, we first introduce a pivot filter condition for the RkNN query and utilize it to deliberately design a pivot filter R-tree (PFR-tree) to organize the high-dimensional dataset such that the RkNN query has sublinear query efficiency. Then, we propose our PHRkNN scheme by designing some homomorphic encryption based private algorithms and applying them to privately achieve PFR-tree based RkNN query. After that, we propose an oblivious PHRkNN scheme on the basis of the PHRkNN scheme by designing a private random tree permutation (PRTP) algorithm to protect the access pattern privacy. The security of our PHRkNN scheme and oblivious PHRkNN scheme is proved by the simulation-based security analysis. The performance is verified through computational costs and communication overheads evaluation.</description><subject>Algorithms</subject><subject>Big Data</subject><subject>Cloud computing</subject><subject>Computational efficiency</subject><subject>Cost analysis</subject><subject>Cryptography</subject><subject>Cybersecurity</subject><subject>Data privacy</subject><subject>Encryption</subject><subject>high-dimensional data</subject><subject>Homomorphic encryption</subject><subject>Outsourcing</subject><subject>Pattern analysis</subject><subject>Permutations</subject><subject>pivot filter condition</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Queries</subject><subject>reverse kNN query</subject><subject>Servers</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PAjEQhhujiYj-ABMPTTwv9pNuvZkFxYQAIl5tht0Wi7Cr7S4J_94lcPA0bybPO5k8CN1S0qOU6IfF4D3rMcJ4jzNNFZVnqEO1oAkhND1vsxQykVrRS3QV45oQJlItOuhzNpp_TyaPeOicz70tawxlgWfB7yDfJ7Ngow07X67w3O5siBa3NH5rbNjjabvAI7_6SgZ-a8voqxI2eAA1YF_ibFM1xTW6cLCJ9uY0u-jjebjIRsl4-vKaPY2TnIl-neSSSk6kBN4HEAoE11JromVaSAdLcJoLzV2eatDAhC6UcIoAJ8u-k_lS8y66P979CdVvY2Nt1lUT2nei4USllAiuREvRI5WHKsZgnfkJfgthbygxB43moNEcNJqTxrZzd-x4a-0_nipGZMr_AKQRbOc</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Zheng, Yandong</creator><creator>Zhu, Hui</creator><creator>Lu, Rongxing</creator><creator>Guan, Yunguo</creator><creator>Zhang, Songnian</creator><creator>Wang, Fengwei</creator><creator>Shao, Jun</creator><creator>Li, Hui</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-0558-4485</orcidid><orcidid>https://orcid.org/0000-0002-3965-3389</orcidid><orcidid>https://orcid.org/0000-0002-5853-633X</orcidid><orcidid>https://orcid.org/0000-0001-5720-0941</orcidid><orcidid>https://orcid.org/0000-0002-6886-8258</orcidid><orcidid>https://orcid.org/0000-0001-8310-7169</orcidid><orcidid>https://orcid.org/0000-0001-8352-0973</orcidid><orcidid>https://orcid.org/0000-0003-4534-5670</orcidid></search><sort><creationdate>20240701</creationdate><title>PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud</title><author>Zheng, Yandong ; Zhu, Hui ; Lu, Rongxing ; Guan, Yunguo ; Zhang, Songnian ; Wang, Fengwei ; Shao, Jun ; Li, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-c5153055a36aa47a4395990958d5fabaf93493fc89a9a249d74f70a30b6f5cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Big Data</topic><topic>Cloud computing</topic><topic>Computational efficiency</topic><topic>Cost analysis</topic><topic>Cryptography</topic><topic>Cybersecurity</topic><topic>Data privacy</topic><topic>Encryption</topic><topic>high-dimensional data</topic><topic>Homomorphic encryption</topic><topic>Outsourcing</topic><topic>Pattern analysis</topic><topic>Permutations</topic><topic>pivot filter condition</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Queries</topic><topic>reverse kNN query</topic><topic>Servers</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yandong</creatorcontrib><creatorcontrib>Zhu, Hui</creatorcontrib><creatorcontrib>Lu, Rongxing</creatorcontrib><creatorcontrib>Guan, Yunguo</creatorcontrib><creatorcontrib>Zhang, Songnian</creatorcontrib><creatorcontrib>Wang, Fengwei</creatorcontrib><creatorcontrib>Shao, Jun</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yandong</au><au>Zhu, Hui</au><au>Lu, Rongxing</au><au>Guan, Yunguo</au><au>Zhang, Songnian</au><au>Wang, Fengwei</au><au>Shao, Jun</au><au>Li, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>1831</spage><epage>1844</epage><pages>1831-1844</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Big data and bursting cloud computing technologies have facilitated an increasing trend of outsourcing data-driven services to the cloud, where the reverse kNN (RkNN) query is a popularly outsourced query service. The RkNN query aims to retrieve objects having the query object as kNN and widely applied in the product recommendation. Considering privacy concerns, the outsourced query services are demanded to protect data privacy, and consequently a series of privacy-preserving query solutions have been put forth. Nevertheless, RkNN query over high-dimensional data has not been studied to date. In this work, we design the first efficient and privacy-preserving RkNN query scheme over encrypted high-dimensional data, named PHRkNN. Specifically, we first introduce a pivot filter condition for the RkNN query and utilize it to deliberately design a pivot filter R-tree (PFR-tree) to organize the high-dimensional dataset such that the RkNN query has sublinear query efficiency. Then, we propose our PHRkNN scheme by designing some homomorphic encryption based private algorithms and applying them to privately achieve PFR-tree based RkNN query. After that, we propose an oblivious PHRkNN scheme on the basis of the PHRkNN scheme by designing a private random tree permutation (PRTP) algorithm to protect the access pattern privacy. The security of our PHRkNN scheme and oblivious PHRkNN scheme is proved by the simulation-based security analysis. The performance is verified through computational costs and communication overheads evaluation.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2023.3291715</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0558-4485</orcidid><orcidid>https://orcid.org/0000-0002-3965-3389</orcidid><orcidid>https://orcid.org/0000-0002-5853-633X</orcidid><orcidid>https://orcid.org/0000-0001-5720-0941</orcidid><orcidid>https://orcid.org/0000-0002-6886-8258</orcidid><orcidid>https://orcid.org/0000-0001-8310-7169</orcidid><orcidid>https://orcid.org/0000-0001-8352-0973</orcidid><orcidid>https://orcid.org/0000-0003-4534-5670</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2024-07, Vol.21 (4), p.1831-1844
issn 1545-5971
1941-0018
language eng
recordid cdi_ieee_primary_10172058
source IEEE Xplore (Online service)
subjects Algorithms
Big Data
Cloud computing
Computational efficiency
Cost analysis
Cryptography
Cybersecurity
Data privacy
Encryption
high-dimensional data
Homomorphic encryption
Outsourcing
Pattern analysis
Permutations
pivot filter condition
Privacy
privacy-preserving
Queries
reverse kNN query
Servers
title PHRkNN: Efficient and Privacy-Preserving Reverse kNN Query Over High-Dimensional Data in Cloud
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PHRkNN:%20Efficient%20and%20Privacy-Preserving%20Reverse%20kNN%20Query%20Over%20High-Dimensional%20Data%20in%20Cloud&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Zheng,%20Yandong&rft.date=2024-07-01&rft.volume=21&rft.issue=4&rft.spage=1831&rft.epage=1844&rft.pages=1831-1844&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2023.3291715&rft_dat=%3Cproquest_ieee_%3E3078104374%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-c5153055a36aa47a4395990958d5fabaf93493fc89a9a249d74f70a30b6f5cb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3078104374&rft_id=info:pmid/&rft_ieee_id=10172058&rfr_iscdi=true