Loading…
Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data
The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurfa...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Vatankhah, Saeed Huang, Xingguo Renaut, Rosemary A. Mickus, Kevin Kabirzadeh, Hojjat Lin, Jun |
description | The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area. |
doi_str_mv | 10.1109/TGRS.2023.3292889 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10174732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10174732</ieee_id><sourcerecordid>2840391910</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-ab66909e4141128fd265f158b4a2d5015201726359c6aa8b1fd7f197bfdf1fcb3</originalsourceid><addsrcrecordid>eNotjd9LwzAcxIMoOKd_gOBDwOfOfPOryaOMOYWBoPO5pE1SM9q0ttlw_73V-XR38Lk7hG6BLACIftiu394XlFC2YFRTpfQZmoEQKiOS83M0I6BlRpWml-hqHHeEABeQz5BbeR-q4GJqjji0fePayYdYYxMtLk1jYvWb0qfDbfh2Fm_6LHZDi3ddiAmHeHDDGLqIO4_rwRxCOv5VW1NHl0KFrUnmGl1404zu5l_n6ONptV0-Z5vX9cvycZMFSnjKTCmlJtpx4ABUeUul8CBUyQ21goCgBHIqmdCVNEaV4G3uQeeltx58VbI5uj_t9kP3tXdjKnbdfojTZUEVJ0yDBjJRdycqOOeKfgitGY4FTNs8Z5T9AMzkYkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840391910</pqid></control><display><type>article</type><title>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vatankhah, Saeed ; Huang, Xingguo ; Renaut, Rosemary A. ; Mickus, Kevin ; Kabirzadeh, Hojjat ; Lin, Jun</creator><creatorcontrib>Vatankhah, Saeed ; Huang, Xingguo ; Renaut, Rosemary A. ; Mickus, Kevin ; Kabirzadeh, Hojjat ; Lin, Jun</creatorcontrib><description>The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3292889</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Balancing ; Boreholes ; Computation ; Computational modeling ; Couplings ; Data acquisition ; Data models ; Datasets ; Fast Fourier transformations ; Fourier transforms ; Gravity ; Inversion ; Joint inversion ; Kimberlite ; Magnetic ; Magnetic data ; Magnetic domains ; Magnetic susceptibility ; Mathematical models ; mixed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L p -norm ; Noise levels ; Objective function ; Parameters ; Sensitivity</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9296-0890 ; 0000-0001-7403-6848 ; 0000-0001-9719-6297 ; 0000-0002-7568-9346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10174732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vatankhah, Saeed</creatorcontrib><creatorcontrib>Huang, Xingguo</creatorcontrib><creatorcontrib>Renaut, Rosemary A.</creatorcontrib><creatorcontrib>Mickus, Kevin</creatorcontrib><creatorcontrib>Kabirzadeh, Hojjat</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><title>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Boreholes</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Couplings</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Datasets</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Gravity</subject><subject>Inversion</subject><subject>Joint inversion</subject><subject>Kimberlite</subject><subject>Magnetic</subject><subject>Magnetic data</subject><subject>Magnetic domains</subject><subject>Magnetic susceptibility</subject><subject>Mathematical models</subject><subject>mixed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L p -norm</subject><subject>Noise levels</subject><subject>Objective function</subject><subject>Parameters</subject><subject>Sensitivity</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjd9LwzAcxIMoOKd_gOBDwOfOfPOryaOMOYWBoPO5pE1SM9q0ttlw_73V-XR38Lk7hG6BLACIftiu394XlFC2YFRTpfQZmoEQKiOS83M0I6BlRpWml-hqHHeEABeQz5BbeR-q4GJqjji0fePayYdYYxMtLk1jYvWb0qfDbfh2Fm_6LHZDi3ddiAmHeHDDGLqIO4_rwRxCOv5VW1NHl0KFrUnmGl1404zu5l_n6ONptV0-Z5vX9cvycZMFSnjKTCmlJtpx4ABUeUul8CBUyQ21goCgBHIqmdCVNEaV4G3uQeeltx58VbI5uj_t9kP3tXdjKnbdfojTZUEVJ0yDBjJRdycqOOeKfgitGY4FTNs8Z5T9AMzkYkw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Vatankhah, Saeed</creator><creator>Huang, Xingguo</creator><creator>Renaut, Rosemary A.</creator><creator>Mickus, Kevin</creator><creator>Kabirzadeh, Hojjat</creator><creator>Lin, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9296-0890</orcidid><orcidid>https://orcid.org/0000-0001-7403-6848</orcidid><orcidid>https://orcid.org/0000-0001-9719-6297</orcidid><orcidid>https://orcid.org/0000-0002-7568-9346</orcidid></search><sort><creationdate>20230101</creationdate><title>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</title><author>Vatankhah, Saeed ; Huang, Xingguo ; Renaut, Rosemary A. ; Mickus, Kevin ; Kabirzadeh, Hojjat ; Lin, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-ab66909e4141128fd265f158b4a2d5015201726359c6aa8b1fd7f197bfdf1fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Boreholes</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Couplings</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Datasets</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Gravity</topic><topic>Inversion</topic><topic>Joint inversion</topic><topic>Kimberlite</topic><topic>Magnetic</topic><topic>Magnetic data</topic><topic>Magnetic domains</topic><topic>Magnetic susceptibility</topic><topic>Mathematical models</topic><topic>mixed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L p -norm</topic><topic>Noise levels</topic><topic>Objective function</topic><topic>Parameters</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatankhah, Saeed</creatorcontrib><creatorcontrib>Huang, Xingguo</creatorcontrib><creatorcontrib>Renaut, Rosemary A.</creatorcontrib><creatorcontrib>Mickus, Kevin</creatorcontrib><creatorcontrib>Kabirzadeh, Hojjat</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatankhah, Saeed</au><au>Huang, Xingguo</au><au>Renaut, Rosemary A.</au><au>Mickus, Kevin</au><au>Kabirzadeh, Hojjat</au><au>Lin, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3292889</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9296-0890</orcidid><orcidid>https://orcid.org/0000-0001-7403-6848</orcidid><orcidid>https://orcid.org/0000-0001-9719-6297</orcidid><orcidid>https://orcid.org/0000-0002-7568-9346</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10174732 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Balancing Boreholes Computation Computational modeling Couplings Data acquisition Data models Datasets Fast Fourier transformations Fourier transforms Gravity Inversion Joint inversion Kimberlite Magnetic Magnetic data Magnetic domains Magnetic susceptibility Mathematical models mixed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L p -norm Noise levels Objective function Parameters Sensitivity |
title | Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiently%20implementing%20and%20balancing%20the%20mixed%20Lp-norm%20joint%20inversion%20of%20gravity%20and%20magnetic%20data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Vatankhah,%20Saeed&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3292889&rft_dat=%3Cproquest_ieee_%3E2840391910%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-ab66909e4141128fd265f158b4a2d5015201726359c6aa8b1fd7f197bfdf1fcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2840391910&rft_id=info:pmid/&rft_ieee_id=10174732&rfr_iscdi=true |