Loading…

Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data

The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurfa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Main Authors: Vatankhah, Saeed, Huang, Xingguo, Renaut, Rosemary A., Mickus, Kevin, Kabirzadeh, Hojjat, Lin, Jun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Vatankhah, Saeed
Huang, Xingguo
Renaut, Rosemary A.
Mickus, Kevin
Kabirzadeh, Hojjat
Lin, Jun
description The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.
doi_str_mv 10.1109/TGRS.2023.3292889
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10174732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10174732</ieee_id><sourcerecordid>2840391910</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-ab66909e4141128fd265f158b4a2d5015201726359c6aa8b1fd7f197bfdf1fcb3</originalsourceid><addsrcrecordid>eNotjd9LwzAcxIMoOKd_gOBDwOfOfPOryaOMOYWBoPO5pE1SM9q0ttlw_73V-XR38Lk7hG6BLACIftiu394XlFC2YFRTpfQZmoEQKiOS83M0I6BlRpWml-hqHHeEABeQz5BbeR-q4GJqjji0fePayYdYYxMtLk1jYvWb0qfDbfh2Fm_6LHZDi3ddiAmHeHDDGLqIO4_rwRxCOv5VW1NHl0KFrUnmGl1404zu5l_n6ONptV0-Z5vX9cvycZMFSnjKTCmlJtpx4ABUeUul8CBUyQ21goCgBHIqmdCVNEaV4G3uQeeltx58VbI5uj_t9kP3tXdjKnbdfojTZUEVJ0yDBjJRdycqOOeKfgitGY4FTNs8Z5T9AMzkYkw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2840391910</pqid></control><display><type>article</type><title>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Vatankhah, Saeed ; Huang, Xingguo ; Renaut, Rosemary A. ; Mickus, Kevin ; Kabirzadeh, Hojjat ; Lin, Jun</creator><creatorcontrib>Vatankhah, Saeed ; Huang, Xingguo ; Renaut, Rosemary A. ; Mickus, Kevin ; Kabirzadeh, Hojjat ; Lin, Jun</creatorcontrib><description>The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3292889</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Balancing ; Boreholes ; Computation ; Computational modeling ; Couplings ; Data acquisition ; Data models ; Datasets ; Fast Fourier transformations ; Fourier transforms ; Gravity ; Inversion ; Joint inversion ; Kimberlite ; Magnetic ; Magnetic data ; Magnetic domains ; Magnetic susceptibility ; Mathematical models ; mixed &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L p -norm ; Noise levels ; Objective function ; Parameters ; Sensitivity</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9296-0890 ; 0000-0001-7403-6848 ; 0000-0001-9719-6297 ; 0000-0002-7568-9346</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10174732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Vatankhah, Saeed</creatorcontrib><creatorcontrib>Huang, Xingguo</creatorcontrib><creatorcontrib>Renaut, Rosemary A.</creatorcontrib><creatorcontrib>Mickus, Kevin</creatorcontrib><creatorcontrib>Kabirzadeh, Hojjat</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><title>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.</description><subject>Algorithms</subject><subject>Balancing</subject><subject>Boreholes</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Couplings</subject><subject>Data acquisition</subject><subject>Data models</subject><subject>Datasets</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Gravity</subject><subject>Inversion</subject><subject>Joint inversion</subject><subject>Kimberlite</subject><subject>Magnetic</subject><subject>Magnetic data</subject><subject>Magnetic domains</subject><subject>Magnetic susceptibility</subject><subject>Mathematical models</subject><subject>mixed &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L p -norm</subject><subject>Noise levels</subject><subject>Objective function</subject><subject>Parameters</subject><subject>Sensitivity</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjd9LwzAcxIMoOKd_gOBDwOfOfPOryaOMOYWBoPO5pE1SM9q0ttlw_73V-XR38Lk7hG6BLACIftiu394XlFC2YFRTpfQZmoEQKiOS83M0I6BlRpWml-hqHHeEABeQz5BbeR-q4GJqjji0fePayYdYYxMtLk1jYvWb0qfDbfh2Fm_6LHZDi3ddiAmHeHDDGLqIO4_rwRxCOv5VW1NHl0KFrUnmGl1404zu5l_n6ONptV0-Z5vX9cvycZMFSnjKTCmlJtpx4ABUeUul8CBUyQ21goCgBHIqmdCVNEaV4G3uQeeltx58VbI5uj_t9kP3tXdjKnbdfojTZUEVJ0yDBjJRdycqOOeKfgitGY4FTNs8Z5T9AMzkYkw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Vatankhah, Saeed</creator><creator>Huang, Xingguo</creator><creator>Renaut, Rosemary A.</creator><creator>Mickus, Kevin</creator><creator>Kabirzadeh, Hojjat</creator><creator>Lin, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9296-0890</orcidid><orcidid>https://orcid.org/0000-0001-7403-6848</orcidid><orcidid>https://orcid.org/0000-0001-9719-6297</orcidid><orcidid>https://orcid.org/0000-0002-7568-9346</orcidid></search><sort><creationdate>20230101</creationdate><title>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</title><author>Vatankhah, Saeed ; Huang, Xingguo ; Renaut, Rosemary A. ; Mickus, Kevin ; Kabirzadeh, Hojjat ; Lin, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-ab66909e4141128fd265f158b4a2d5015201726359c6aa8b1fd7f197bfdf1fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Balancing</topic><topic>Boreholes</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Couplings</topic><topic>Data acquisition</topic><topic>Data models</topic><topic>Datasets</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Gravity</topic><topic>Inversion</topic><topic>Joint inversion</topic><topic>Kimberlite</topic><topic>Magnetic</topic><topic>Magnetic data</topic><topic>Magnetic domains</topic><topic>Magnetic susceptibility</topic><topic>Mathematical models</topic><topic>mixed &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;L p -norm</topic><topic>Noise levels</topic><topic>Objective function</topic><topic>Parameters</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vatankhah, Saeed</creatorcontrib><creatorcontrib>Huang, Xingguo</creatorcontrib><creatorcontrib>Renaut, Rosemary A.</creatorcontrib><creatorcontrib>Mickus, Kevin</creatorcontrib><creatorcontrib>Kabirzadeh, Hojjat</creatorcontrib><creatorcontrib>Lin, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vatankhah, Saeed</au><au>Huang, Xingguo</au><au>Renaut, Rosemary A.</au><au>Mickus, Kevin</au><au>Kabirzadeh, Hojjat</au><au>Lin, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The mixed L p -norm, 0 ≤ p ≤ 2, stabilization algorithm is flexible for constructing a suite of subsurface models with either distinct, or a combination of, smooth, sparse, or blocky structures. This general purpose algorithm can be used for the inversion of data from regions with different subsurface characteristics. Model interpretation is improved by simultaneous inversion of multiple data sets using a joint inversion approach. An effective and general algorithm is presented for the mixed L p -norm joint inversion of gravity and magnetic data sets. The imposition of the structural cross-gradient enforces similarity between the reconstructed models. For efficiency the implementation relies on three crucial realistic details; (i) the data are assumed to be on a uniform grid providing sensitivity matrices that decompose in block Toeplitz Toeplitz block form for each depth layer of the model domain and yield efficiency in storage and computation via 2D fast Fourier transforms; (ii) matrix-free implementation for calculating derivatives of parameters reduces memory and computational overhead; and (iii) an alternating updating algorithm is employed. Balancing of the data misfit terms is imposed to assure that the gravity and magnetic data sets are fit with respect to their individual noise levels without overfitting of either model. Strategies to find all weighting parameters within the objective function are described. The algorithm is validated on two synthetic but complicated models. It is applied to invert gravity and magnetic data acquired over two kimberlite pipes in Botswana, producing models that are in good agreement with borehole information available in the survey area.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3292889</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9296-0890</orcidid><orcidid>https://orcid.org/0000-0001-7403-6848</orcidid><orcidid>https://orcid.org/0000-0001-9719-6297</orcidid><orcidid>https://orcid.org/0000-0002-7568-9346</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10174732
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Balancing
Boreholes
Computation
Computational modeling
Couplings
Data acquisition
Data models
Datasets
Fast Fourier transformations
Fourier transforms
Gravity
Inversion
Joint inversion
Kimberlite
Magnetic
Magnetic data
Magnetic domains
Magnetic susceptibility
Mathematical models
mixed <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">L p -norm
Noise levels
Objective function
Parameters
Sensitivity
title Efficiently implementing and balancing the mixed Lp-norm joint inversion of gravity and magnetic data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiently%20implementing%20and%20balancing%20the%20mixed%20Lp-norm%20joint%20inversion%20of%20gravity%20and%20magnetic%20data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Vatankhah,%20Saeed&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3292889&rft_dat=%3Cproquest_ieee_%3E2840391910%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-ab66909e4141128fd265f158b4a2d5015201726359c6aa8b1fd7f197bfdf1fcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2840391910&rft_id=info:pmid/&rft_ieee_id=10174732&rfr_iscdi=true