Loading…
A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images
Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. G...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 20 |
creator | Liu, Dongyang Zhang, Junping Li, Tong Qi, Yunxiao Wu, Yinhu Zhang, Ye |
description | Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet. |
doi_str_mv | 10.1109/LGRS.2023.3292890 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10174743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10174743</ieee_id><sourcerecordid>2839533161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_s_usVathZRCq-AtbJJJm5Jm626K-O1N2h68zJsH783AD6F7SkaUEvOUTJerESOMjzgzTBtygQZUSh0RGdPLfhcykkZ_XaObELaEMKF1PEB-jJNqvWl_oJ94kW0hb_ELtJ1UrsG2KfAScrduqqOfQ7txBX62AQrc-WMZT2uX2TpKXG5rPHfFoQZcOt81d64FvIImVM0az3Z2DeEWXZW2DnB31iH6fHv9mLxHyWI6m4yTKGdGtBGTjPA404WmXJeyBEmN0coAA2qJzDkX1mbKMEWEVZkRRaxYDKBAKFtazYfo8XR37933AUKbbt3BN93LlGluJOdU0S5FT6ncuxA8lOneVzvrf1NK0h5t2qNNe7TpGW3XeTh1KgD4l6exiAXnf656dLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839533161</pqid></control><display><type>article</type><title>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Dongyang ; Zhang, Junping ; Li, Tong ; Qi, Yunxiao ; Wu, Yinhu ; Zhang, Ye</creator><creatorcontrib>Liu, Dongyang ; Zhang, Junping ; Li, Tong ; Qi, Yunxiao ; Wu, Yinhu ; Zhang, Ye</creatorcontrib><description>Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3292890</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complexity ; Computation ; Computational modeling ; Computer applications ; Computing costs ; Convolution ; Deep learning ; Detection ; Feature extraction ; global information extraction ; Head ; in-orbit applications ; Information processing ; Information retrieval ; Light ; Lightweight ; Machine learning ; Mathematical models ; Modelling ; Modules ; Object detection ; object detection and recognition ; Object recognition ; Parameters ; Real time ; Remote sensing ; remote sensing images</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</citedby><cites>FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</cites><orcidid>0000-0001-8721-4535 ; 0000-0002-1082-114X ; 0000-0003-3342-8356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10174743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Dongyang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Qi, Yunxiao</creatorcontrib><creatorcontrib>Wu, Yinhu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><title>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing costs</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>global information extraction</subject><subject>Head</subject><subject>in-orbit applications</subject><subject>Information processing</subject><subject>Information retrieval</subject><subject>Light</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Modules</subject><subject>Object detection</subject><subject>object detection and recognition</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_s_usVathZRCq-AtbJJJm5Jm626K-O1N2h68zJsH783AD6F7SkaUEvOUTJerESOMjzgzTBtygQZUSh0RGdPLfhcykkZ_XaObELaEMKF1PEB-jJNqvWl_oJ94kW0hb_ELtJ1UrsG2KfAScrduqqOfQ7txBX62AQrc-WMZT2uX2TpKXG5rPHfFoQZcOt81d64FvIImVM0az3Z2DeEWXZW2DnB31iH6fHv9mLxHyWI6m4yTKGdGtBGTjPA404WmXJeyBEmN0coAA2qJzDkX1mbKMEWEVZkRRaxYDKBAKFtazYfo8XR37933AUKbbt3BN93LlGluJOdU0S5FT6ncuxA8lOneVzvrf1NK0h5t2qNNe7TpGW3XeTh1KgD4l6exiAXnf656dLo</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Dongyang</creator><creator>Zhang, Junping</creator><creator>Li, Tong</creator><creator>Qi, Yunxiao</creator><creator>Wu, Yinhu</creator><creator>Zhang, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0003-3342-8356</orcidid></search><sort><creationdate>20230101</creationdate><title>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</title><author>Liu, Dongyang ; Zhang, Junping ; Li, Tong ; Qi, Yunxiao ; Wu, Yinhu ; Zhang, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing costs</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>global information extraction</topic><topic>Head</topic><topic>in-orbit applications</topic><topic>Information processing</topic><topic>Information retrieval</topic><topic>Light</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Modules</topic><topic>Object detection</topic><topic>object detection and recognition</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dongyang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Qi, Yunxiao</creatorcontrib><creatorcontrib>Wu, Yinhu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dongyang</au><au>Zhang, Junping</au><au>Li, Tong</au><au>Qi, Yunxiao</au><au>Wu, Yinhu</au><au>Zhang, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3292890</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0003-3342-8356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_ieee_primary_10174743 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Complexity Computation Computational modeling Computer applications Computing costs Convolution Deep learning Detection Feature extraction global information extraction Head in-orbit applications Information processing Information retrieval Light Lightweight Machine learning Mathematical models Modelling Modules Object detection object detection and recognition Object recognition Parameters Real time Remote sensing remote sensing images |
title | A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Object%20Detection%20and%20Recognition%20Method%20Based%20on%20Light%20Global-Local%20Module%20for%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Liu,%20Dongyang&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3292890&rft_dat=%3Cproquest_ieee_%3E2839533161%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839533161&rft_id=info:pmid/&rft_ieee_id=10174743&rfr_iscdi=true |