Loading…

A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images

Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. G...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2023-01, Vol.20, p.1-1
Main Authors: Liu, Dongyang, Zhang, Junping, Li, Tong, Qi, Yunxiao, Wu, Yinhu, Zhang, Ye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83
cites cdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83
container_end_page 1
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 20
creator Liu, Dongyang
Zhang, Junping
Li, Tong
Qi, Yunxiao
Wu, Yinhu
Zhang, Ye
description Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.
doi_str_mv 10.1109/LGRS.2023.3292890
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10174743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10174743</ieee_id><sourcerecordid>2839533161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_s_usVathZRCq-AtbJJJm5Jm626K-O1N2h68zJsH783AD6F7SkaUEvOUTJerESOMjzgzTBtygQZUSh0RGdPLfhcykkZ_XaObELaEMKF1PEB-jJNqvWl_oJ94kW0hb_ELtJ1UrsG2KfAScrduqqOfQ7txBX62AQrc-WMZT2uX2TpKXG5rPHfFoQZcOt81d64FvIImVM0az3Z2DeEWXZW2DnB31iH6fHv9mLxHyWI6m4yTKGdGtBGTjPA404WmXJeyBEmN0coAA2qJzDkX1mbKMEWEVZkRRaxYDKBAKFtazYfo8XR37933AUKbbt3BN93LlGluJOdU0S5FT6ncuxA8lOneVzvrf1NK0h5t2qNNe7TpGW3XeTh1KgD4l6exiAXnf656dLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839533161</pqid></control><display><type>article</type><title>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Dongyang ; Zhang, Junping ; Li, Tong ; Qi, Yunxiao ; Wu, Yinhu ; Zhang, Ye</creator><creatorcontrib>Liu, Dongyang ; Zhang, Junping ; Li, Tong ; Qi, Yunxiao ; Wu, Yinhu ; Zhang, Ye</creatorcontrib><description>Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2023.3292890</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Complexity ; Computation ; Computational modeling ; Computer applications ; Computing costs ; Convolution ; Deep learning ; Detection ; Feature extraction ; global information extraction ; Head ; in-orbit applications ; Information processing ; Information retrieval ; Light ; Lightweight ; Machine learning ; Mathematical models ; Modelling ; Modules ; Object detection ; object detection and recognition ; Object recognition ; Parameters ; Real time ; Remote sensing ; remote sensing images</subject><ispartof>IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</citedby><cites>FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</cites><orcidid>0000-0001-8721-4535 ; 0000-0002-1082-114X ; 0000-0003-3342-8356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10174743$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Liu, Dongyang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Qi, Yunxiao</creatorcontrib><creatorcontrib>Wu, Yinhu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><title>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing costs</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Detection</subject><subject>Feature extraction</subject><subject>global information extraction</subject><subject>Head</subject><subject>in-orbit applications</subject><subject>Information processing</subject><subject>Information retrieval</subject><subject>Light</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Modules</subject><subject>Object detection</subject><subject>object detection and recognition</subject><subject>Object recognition</subject><subject>Parameters</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwXPq_s_usVathZRCq-AtbJJJm5Jm626K-O1N2h68zJsH783AD6F7SkaUEvOUTJerESOMjzgzTBtygQZUSh0RGdPLfhcykkZ_XaObELaEMKF1PEB-jJNqvWl_oJ94kW0hb_ELtJ1UrsG2KfAScrduqqOfQ7txBX62AQrc-WMZT2uX2TpKXG5rPHfFoQZcOt81d64FvIImVM0az3Z2DeEWXZW2DnB31iH6fHv9mLxHyWI6m4yTKGdGtBGTjPA404WmXJeyBEmN0coAA2qJzDkX1mbKMEWEVZkRRaxYDKBAKFtazYfo8XR37933AUKbbt3BN93LlGluJOdU0S5FT6ncuxA8lOneVzvrf1NK0h5t2qNNe7TpGW3XeTh1KgD4l6exiAXnf656dLo</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Liu, Dongyang</creator><creator>Zhang, Junping</creator><creator>Li, Tong</creator><creator>Qi, Yunxiao</creator><creator>Wu, Yinhu</creator><creator>Zhang, Ye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0003-3342-8356</orcidid></search><sort><creationdate>20230101</creationdate><title>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</title><author>Liu, Dongyang ; Zhang, Junping ; Li, Tong ; Qi, Yunxiao ; Wu, Yinhu ; Zhang, Ye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing costs</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Detection</topic><topic>Feature extraction</topic><topic>global information extraction</topic><topic>Head</topic><topic>in-orbit applications</topic><topic>Information processing</topic><topic>Information retrieval</topic><topic>Light</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Modules</topic><topic>Object detection</topic><topic>object detection and recognition</topic><topic>Object recognition</topic><topic>Parameters</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dongyang</creatorcontrib><creatorcontrib>Zhang, Junping</creatorcontrib><creatorcontrib>Li, Tong</creatorcontrib><creatorcontrib>Qi, Yunxiao</creatorcontrib><creatorcontrib>Wu, Yinhu</creatorcontrib><creatorcontrib>Zhang, Ye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dongyang</au><au>Zhang, Junping</au><au>Li, Tong</au><au>Qi, Yunxiao</au><au>Wu, Yinhu</au><au>Zhang, Ye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>20</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Lightweight object detection and recognition models are extremely crucial for in-orbit applications, which is the most critical factor for whether deep learning-based object detection and recognition algorithms can be applied to remote sensing satellites for real-time or near real-time processing. Global information is extremely important for object detection and recognition of remote sensing images. However, due to the high computational cost, the existing CNN-based lightweight models over-emphasize on the extraction of local information, while ignoring the global information. For this reason, we propose a lightweight object detection and recognition model (Lightweight Global-Local Detection, LGLDet) based on the especially light global modeling structure. In LGLDet, light global-local module (LGLM) is proposed to extract the global and local information. The LGLM consists of Point2Patch Non-Local (P2PNL), local branch and skip connection. Specifically, P2PNL is proposed to reduce the computation of global long-range dependency modeling. In addition, the feature fusion part and detection head are also designed in a lightweight way. In the experiments, the proposed method can achieve optimal performance with fewer parameters and lower computational complexity than existing CNN-based lightweight models and transformer-based lightweight models with similar parameters or computational complexity. The code will be released on the site of https://github.com/dyl96/LGLDet.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2023.3292890</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8721-4535</orcidid><orcidid>https://orcid.org/0000-0002-1082-114X</orcidid><orcidid>https://orcid.org/0000-0003-3342-8356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2023-01, Vol.20, p.1-1
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_10174743
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Complexity
Computation
Computational modeling
Computer applications
Computing costs
Convolution
Deep learning
Detection
Feature extraction
global information extraction
Head
in-orbit applications
Information processing
Information retrieval
Light
Lightweight
Machine learning
Mathematical models
Modelling
Modules
Object detection
object detection and recognition
Object recognition
Parameters
Real time
Remote sensing
remote sensing images
title A Lightweight Object Detection and Recognition Method Based on Light Global-Local Module for Remote Sensing Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lightweight%20Object%20Detection%20and%20Recognition%20Method%20Based%20on%20Light%20Global-Local%20Module%20for%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Liu,%20Dongyang&rft.date=2023-01-01&rft.volume=20&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2023.3292890&rft_dat=%3Cproquest_ieee_%3E2839533161%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-252037b8d8138f5fe5199869e2e1a05c334aab692604a6b94d7627ee6e46afa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839533161&rft_id=info:pmid/&rft_ieee_id=10174743&rfr_iscdi=true