Loading…

Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging

Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of...

Full description

Saved in:
Bibliographic Details
Main Authors: De Freitas Oliveira Baffa, Matheus, Bachmann, Luciano, Zezell, Denise Maria, Pereira, Thiago Martini, Deserno, Thomas Martin, Felipe, Joaquim Cezar
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 615
container_issue
container_start_page 611
container_title
container_volume
creator De Freitas Oliveira Baffa, Matheus
Bachmann, Luciano
Zezell, Denise Maria
Pereira, Thiago Martini
Deserno, Thomas Martin
Felipe, Joaquim Cezar
description Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.
doi_str_mv 10.1109/CBMS58004.2023.00288
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10178797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10178797</ieee_id><sourcerecordid>10178797</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-158840c38eff42ebeb4228f6173658964af25d6c0c8af4f6cf9e75bd6261a983</originalsourceid><addsrcrecordid>eNotj8tOAjEYhauJiYi8AYu-wGDvlyWiCImowdmT0vkLFZghnSLh7R2jq29zzndyEBpSMqKU2IfJ4-JTGkLEiBHGR4QwY67QwGpruCScMibsNeoxrllhqTW36K5tvwiRnErZQ7tx9e1qH-sNLreX1MQKf7i8bfbNJkKLnyCDz7Gp8TnmLV6CP6UEdcZvcEpu3yGfm7RrsasrvIg-NcW0nC_x7HKE1B677m9qfnCbbuEe3QS3b2Hwzz4qp8_lZFa8vr_MJ-PXIjIickGlMYJ4biAEwWANa8GYCYpqrqSxSrjAZKU88cYFEZQPFrRcV4op6rrXfTT800YAWB1TPLh0WVFCtdFW8x-XUVn8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</title><source>IEEE Xplore All Conference Series</source><creator>De Freitas Oliveira Baffa, Matheus ; Bachmann, Luciano ; Zezell, Denise Maria ; Pereira, Thiago Martini ; Deserno, Thomas Martin ; Felipe, Joaquim Cezar</creator><creatorcontrib>De Freitas Oliveira Baffa, Matheus ; Bachmann, Luciano ; Zezell, Denise Maria ; Pereira, Thiago Martini ; Deserno, Thomas Martin ; Felipe, Joaquim Cezar</creatorcontrib><description>Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.</description><identifier>EISSN: 2372-9198</identifier><identifier>EISBN: 9798350312249</identifier><identifier>DOI: 10.1109/CBMS58004.2023.00288</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; classification ; computational pathology ; Computer vision ; deep learning ; hyperspectral imaging ; Medical diagnosis ; Medical diagnostic imaging ; Pathology ; Recurrent neural networks ; Sensitivity ; thyroid cancer</subject><ispartof>2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), 2023, p.611-615</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10178797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10178797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Freitas Oliveira Baffa, Matheus</creatorcontrib><creatorcontrib>Bachmann, Luciano</creatorcontrib><creatorcontrib>Zezell, Denise Maria</creatorcontrib><creatorcontrib>Pereira, Thiago Martini</creatorcontrib><creatorcontrib>Deserno, Thomas Martin</creatorcontrib><creatorcontrib>Felipe, Joaquim Cezar</creatorcontrib><title>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</title><title>2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)</title><addtitle>CBMS</addtitle><description>Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.</description><subject>Biology</subject><subject>classification</subject><subject>computational pathology</subject><subject>Computer vision</subject><subject>deep learning</subject><subject>hyperspectral imaging</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Pathology</subject><subject>Recurrent neural networks</subject><subject>Sensitivity</subject><subject>thyroid cancer</subject><issn>2372-9198</issn><isbn>9798350312249</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOAjEYhauJiYi8AYu-wGDvlyWiCImowdmT0vkLFZghnSLh7R2jq29zzndyEBpSMqKU2IfJ4-JTGkLEiBHGR4QwY67QwGpruCScMibsNeoxrllhqTW36K5tvwiRnErZQ7tx9e1qH-sNLreX1MQKf7i8bfbNJkKLnyCDz7Gp8TnmLV6CP6UEdcZvcEpu3yGfm7RrsasrvIg-NcW0nC_x7HKE1B677m9qfnCbbuEe3QS3b2Hwzz4qp8_lZFa8vr_MJ-PXIjIickGlMYJ4biAEwWANa8GYCYpqrqSxSrjAZKU88cYFEZQPFrRcV4op6rrXfTT800YAWB1TPLh0WVFCtdFW8x-XUVn8</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>De Freitas Oliveira Baffa, Matheus</creator><creator>Bachmann, Luciano</creator><creator>Zezell, Denise Maria</creator><creator>Pereira, Thiago Martini</creator><creator>Deserno, Thomas Martin</creator><creator>Felipe, Joaquim Cezar</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202306</creationdate><title>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</title><author>De Freitas Oliveira Baffa, Matheus ; Bachmann, Luciano ; Zezell, Denise Maria ; Pereira, Thiago Martini ; Deserno, Thomas Martin ; Felipe, Joaquim Cezar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-158840c38eff42ebeb4228f6173658964af25d6c0c8af4f6cf9e75bd6261a983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology</topic><topic>classification</topic><topic>computational pathology</topic><topic>Computer vision</topic><topic>deep learning</topic><topic>hyperspectral imaging</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Pathology</topic><topic>Recurrent neural networks</topic><topic>Sensitivity</topic><topic>thyroid cancer</topic><toplevel>online_resources</toplevel><creatorcontrib>De Freitas Oliveira Baffa, Matheus</creatorcontrib><creatorcontrib>Bachmann, Luciano</creatorcontrib><creatorcontrib>Zezell, Denise Maria</creatorcontrib><creatorcontrib>Pereira, Thiago Martini</creatorcontrib><creatorcontrib>Deserno, Thomas Martin</creatorcontrib><creatorcontrib>Felipe, Joaquim Cezar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Freitas Oliveira Baffa, Matheus</au><au>Bachmann, Luciano</au><au>Zezell, Denise Maria</au><au>Pereira, Thiago Martini</au><au>Deserno, Thomas Martin</au><au>Felipe, Joaquim Cezar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</atitle><btitle>2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)</btitle><stitle>CBMS</stitle><date>2023-06</date><risdate>2023</risdate><spage>611</spage><epage>615</epage><pages>611-615</pages><eissn>2372-9198</eissn><eisbn>9798350312249</eisbn><coden>IEEPAD</coden><abstract>Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.</abstract><pub>IEEE</pub><doi>10.1109/CBMS58004.2023.00288</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2372-9198
ispartof 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), 2023, p.611-615
issn 2372-9198
language eng
recordid cdi_ieee_primary_10178797
source IEEE Xplore All Conference Series
subjects Biology
classification
computational pathology
Computer vision
deep learning
hyperspectral imaging
Medical diagnosis
Medical diagnostic imaging
Pathology
Recurrent neural networks
Sensitivity
thyroid cancer
title Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advancing%20Thyroid%20Pathologies%20Detection%20with%20Recurrent%20Neural%20Networks%20and%20Micro-FTIR%20Hyperspectral%20Imaging&rft.btitle=2023%20IEEE%2036th%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS)&rft.au=De%20Freitas%20Oliveira%20Baffa,%20Matheus&rft.date=2023-06&rft.spage=611&rft.epage=615&rft.pages=611-615&rft.eissn=2372-9198&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CBMS58004.2023.00288&rft.eisbn=9798350312249&rft_dat=%3Cieee_CHZPO%3E10178797%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-158840c38eff42ebeb4228f6173658964af25d6c0c8af4f6cf9e75bd6261a983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10178797&rfr_iscdi=true