Loading…
Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging
Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 615 |
container_issue | |
container_start_page | 611 |
container_title | |
container_volume | |
creator | De Freitas Oliveira Baffa, Matheus Bachmann, Luciano Zezell, Denise Maria Pereira, Thiago Martini Deserno, Thomas Martin Felipe, Joaquim Cezar |
description | Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease. |
doi_str_mv | 10.1109/CBMS58004.2023.00288 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10178797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10178797</ieee_id><sourcerecordid>10178797</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-158840c38eff42ebeb4228f6173658964af25d6c0c8af4f6cf9e75bd6261a983</originalsourceid><addsrcrecordid>eNotj8tOAjEYhauJiYi8AYu-wGDvlyWiCImowdmT0vkLFZghnSLh7R2jq29zzndyEBpSMqKU2IfJ4-JTGkLEiBHGR4QwY67QwGpruCScMibsNeoxrllhqTW36K5tvwiRnErZQ7tx9e1qH-sNLreX1MQKf7i8bfbNJkKLnyCDz7Gp8TnmLV6CP6UEdcZvcEpu3yGfm7RrsasrvIg-NcW0nC_x7HKE1B677m9qfnCbbuEe3QS3b2Hwzz4qp8_lZFa8vr_MJ-PXIjIickGlMYJ4biAEwWANa8GYCYpqrqSxSrjAZKU88cYFEZQPFrRcV4op6rrXfTT800YAWB1TPLh0WVFCtdFW8x-XUVn8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</title><source>IEEE Xplore All Conference Series</source><creator>De Freitas Oliveira Baffa, Matheus ; Bachmann, Luciano ; Zezell, Denise Maria ; Pereira, Thiago Martini ; Deserno, Thomas Martin ; Felipe, Joaquim Cezar</creator><creatorcontrib>De Freitas Oliveira Baffa, Matheus ; Bachmann, Luciano ; Zezell, Denise Maria ; Pereira, Thiago Martini ; Deserno, Thomas Martin ; Felipe, Joaquim Cezar</creatorcontrib><description>Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.</description><identifier>EISSN: 2372-9198</identifier><identifier>EISBN: 9798350312249</identifier><identifier>DOI: 10.1109/CBMS58004.2023.00288</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; classification ; computational pathology ; Computer vision ; deep learning ; hyperspectral imaging ; Medical diagnosis ; Medical diagnostic imaging ; Pathology ; Recurrent neural networks ; Sensitivity ; thyroid cancer</subject><ispartof>2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), 2023, p.611-615</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10178797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10178797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Freitas Oliveira Baffa, Matheus</creatorcontrib><creatorcontrib>Bachmann, Luciano</creatorcontrib><creatorcontrib>Zezell, Denise Maria</creatorcontrib><creatorcontrib>Pereira, Thiago Martini</creatorcontrib><creatorcontrib>Deserno, Thomas Martin</creatorcontrib><creatorcontrib>Felipe, Joaquim Cezar</creatorcontrib><title>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</title><title>2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)</title><addtitle>CBMS</addtitle><description>Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.</description><subject>Biology</subject><subject>classification</subject><subject>computational pathology</subject><subject>Computer vision</subject><subject>deep learning</subject><subject>hyperspectral imaging</subject><subject>Medical diagnosis</subject><subject>Medical diagnostic imaging</subject><subject>Pathology</subject><subject>Recurrent neural networks</subject><subject>Sensitivity</subject><subject>thyroid cancer</subject><issn>2372-9198</issn><isbn>9798350312249</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOAjEYhauJiYi8AYu-wGDvlyWiCImowdmT0vkLFZghnSLh7R2jq29zzndyEBpSMqKU2IfJ4-JTGkLEiBHGR4QwY67QwGpruCScMibsNeoxrllhqTW36K5tvwiRnErZQ7tx9e1qH-sNLreX1MQKf7i8bfbNJkKLnyCDz7Gp8TnmLV6CP6UEdcZvcEpu3yGfm7RrsasrvIg-NcW0nC_x7HKE1B677m9qfnCbbuEe3QS3b2Hwzz4qp8_lZFa8vr_MJ-PXIjIickGlMYJ4biAEwWANa8GYCYpqrqSxSrjAZKU88cYFEZQPFrRcV4op6rrXfTT800YAWB1TPLh0WVFCtdFW8x-XUVn8</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>De Freitas Oliveira Baffa, Matheus</creator><creator>Bachmann, Luciano</creator><creator>Zezell, Denise Maria</creator><creator>Pereira, Thiago Martini</creator><creator>Deserno, Thomas Martin</creator><creator>Felipe, Joaquim Cezar</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202306</creationdate><title>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</title><author>De Freitas Oliveira Baffa, Matheus ; Bachmann, Luciano ; Zezell, Denise Maria ; Pereira, Thiago Martini ; Deserno, Thomas Martin ; Felipe, Joaquim Cezar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-158840c38eff42ebeb4228f6173658964af25d6c0c8af4f6cf9e75bd6261a983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology</topic><topic>classification</topic><topic>computational pathology</topic><topic>Computer vision</topic><topic>deep learning</topic><topic>hyperspectral imaging</topic><topic>Medical diagnosis</topic><topic>Medical diagnostic imaging</topic><topic>Pathology</topic><topic>Recurrent neural networks</topic><topic>Sensitivity</topic><topic>thyroid cancer</topic><toplevel>online_resources</toplevel><creatorcontrib>De Freitas Oliveira Baffa, Matheus</creatorcontrib><creatorcontrib>Bachmann, Luciano</creatorcontrib><creatorcontrib>Zezell, Denise Maria</creatorcontrib><creatorcontrib>Pereira, Thiago Martini</creatorcontrib><creatorcontrib>Deserno, Thomas Martin</creatorcontrib><creatorcontrib>Felipe, Joaquim Cezar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Freitas Oliveira Baffa, Matheus</au><au>Bachmann, Luciano</au><au>Zezell, Denise Maria</au><au>Pereira, Thiago Martini</au><au>Deserno, Thomas Martin</au><au>Felipe, Joaquim Cezar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging</atitle><btitle>2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)</btitle><stitle>CBMS</stitle><date>2023-06</date><risdate>2023</risdate><spage>611</spage><epage>615</epage><pages>611-615</pages><eissn>2372-9198</eissn><eisbn>9798350312249</eisbn><coden>IEEPAD</coden><abstract>Thyroid disorders are a complex group of diseases that require an accurate diagnosis for effective treatment. Fine-needle aspiration biopsies can assist in detecting many thyroid diseases. These materials can be analyzed visually using traditional computer vision methods, despite the limitations of complex samples. To address this problem, we propose a novel approach that uses hyperspectral imaging (HSI) to analyze thyroid biological samples. HSI measures the absorbance of infrared light by biological samples using a micro Fourier transform infrared spectroscopy (micro-FTIR) and converts this data into hyperspectral images. In this study, we used HSI to train and validate a recurrent neural network to classify thyroid samples as healthy, cancerous, or goiter. Our experiments, based on the k-fold cross-validation, achieved an overall accuracy of 96.88%, a sensitivity of 96.87%, and a specificity of 98.45%. These results demonstrate the potential of hyperspectral imaging as a tool to assist pathologists in the diagnosis of thyroid disease.</abstract><pub>IEEE</pub><doi>10.1109/CBMS58004.2023.00288</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2372-9198 |
ispartof | 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS), 2023, p.611-615 |
issn | 2372-9198 |
language | eng |
recordid | cdi_ieee_primary_10178797 |
source | IEEE Xplore All Conference Series |
subjects | Biology classification computational pathology Computer vision deep learning hyperspectral imaging Medical diagnosis Medical diagnostic imaging Pathology Recurrent neural networks Sensitivity thyroid cancer |
title | Advancing Thyroid Pathologies Detection with Recurrent Neural Networks and Micro-FTIR Hyperspectral Imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A29%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Advancing%20Thyroid%20Pathologies%20Detection%20with%20Recurrent%20Neural%20Networks%20and%20Micro-FTIR%20Hyperspectral%20Imaging&rft.btitle=2023%20IEEE%2036th%20International%20Symposium%20on%20Computer-Based%20Medical%20Systems%20(CBMS)&rft.au=De%20Freitas%20Oliveira%20Baffa,%20Matheus&rft.date=2023-06&rft.spage=611&rft.epage=615&rft.pages=611-615&rft.eissn=2372-9198&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CBMS58004.2023.00288&rft.eisbn=9798350312249&rft_dat=%3Cieee_CHZPO%3E10178797%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-158840c38eff42ebeb4228f6173658964af25d6c0c8af4f6cf9e75bd6261a983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10178797&rfr_iscdi=true |