Loading…

Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors

Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework a...

Full description

Saved in:
Bibliographic Details
Main Authors: Hsu, Hsieh-Chih, Pan, Chen-Yu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 82
container_issue
container_start_page 80
container_title
container_volume
creator Hsu, Hsieh-Chih
Pan, Chen-Yu
description Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.
doi_str_mv 10.1109/ICASI57738.2023.10179512
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10179512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10179512</ieee_id><sourcerecordid>10179512</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-7df823e1f3b9c3f8c3accbe180f281cff426dc239db5629bea7f83412b11e3e3</originalsourceid><addsrcrecordid>eNo1kMFOwzAQRA0SElXJH3DwD6R4vUlsH1HaQqWiHlq4Vo5jg1HqVI5Vib_HCLjMHObNajWEUGALAKYeNu3jflMLgXLBGccFMBCqBn5FCiWUxJphVsmuyYyLRpYV1M0tKabpkzGGPKdNNSP7pU66XEZ_sYG2Y0hxHOjo6Is1Hzp4owf6ZkPyg05-DPR18uGd7s4Z_inSVbj4OIZTRjK51iaNcbojN04Pky3-fE4O69WhfS63u6f89bb0ACqVoneSowWHnTLopEFtTGdBMsclGOcq3vSGo-q7uuGqs1o4iRXwDsCixTm5_z3rrbXHc_QnHb-O_zPgN_NHUv4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</title><source>IEEE Xplore All Conference Series</source><creator>Hsu, Hsieh-Chih ; Pan, Chen-Yu</creator><creatorcontrib>Hsu, Hsieh-Chih ; Pan, Chen-Yu</creatorcontrib><description>Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.</description><identifier>EISSN: 2768-4156</identifier><identifier>EISBN: 9798350398380</identifier><identifier>DOI: 10.1109/ICASI57738.2023.10179512</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Data models ; data-driven control ; Energy consumption ; open data ; Temperature ; Training ; Ventilation</subject><ispartof>2023 9th International Conference on Applied System Innovation (ICASI), 2023, p.80-82</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10179512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10179512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsu, Hsieh-Chih</creatorcontrib><creatorcontrib>Pan, Chen-Yu</creatorcontrib><title>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</title><title>2023 9th International Conference on Applied System Innovation (ICASI)</title><addtitle>ICASI</addtitle><description>Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Data models</subject><subject>data-driven control</subject><subject>Energy consumption</subject><subject>open data</subject><subject>Temperature</subject><subject>Training</subject><subject>Ventilation</subject><issn>2768-4156</issn><isbn>9798350398380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFOwzAQRA0SElXJH3DwD6R4vUlsH1HaQqWiHlq4Vo5jg1HqVI5Vib_HCLjMHObNajWEUGALAKYeNu3jflMLgXLBGccFMBCqBn5FCiWUxJphVsmuyYyLRpYV1M0tKabpkzGGPKdNNSP7pU66XEZ_sYG2Y0hxHOjo6Is1Hzp4owf6ZkPyg05-DPR18uGd7s4Z_inSVbj4OIZTRjK51iaNcbojN04Pky3-fE4O69WhfS63u6f89bb0ACqVoneSowWHnTLopEFtTGdBMsclGOcq3vSGo-q7uuGqs1o4iRXwDsCixTm5_z3rrbXHc_QnHb-O_zPgN_NHUv4</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Hsu, Hsieh-Chih</creator><creator>Pan, Chen-Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230421</creationdate><title>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</title><author>Hsu, Hsieh-Chih ; Pan, Chen-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-7df823e1f3b9c3f8c3accbe180f281cff426dc239db5629bea7f83412b11e3e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Data models</topic><topic>data-driven control</topic><topic>Energy consumption</topic><topic>open data</topic><topic>Temperature</topic><topic>Training</topic><topic>Ventilation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Hsieh-Chih</creatorcontrib><creatorcontrib>Pan, Chen-Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Hsieh-Chih</au><au>Pan, Chen-Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</atitle><btitle>2023 9th International Conference on Applied System Innovation (ICASI)</btitle><stitle>ICASI</stitle><date>2023-04-21</date><risdate>2023</risdate><spage>80</spage><epage>82</epage><pages>80-82</pages><eissn>2768-4156</eissn><eisbn>9798350398380</eisbn><abstract>Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.</abstract><pub>IEEE</pub><doi>10.1109/ICASI57738.2023.10179512</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2768-4156
ispartof 2023 9th International Conference on Applied System Innovation (ICASI), 2023, p.80-82
issn 2768-4156
language eng
recordid cdi_ieee_primary_10179512
source IEEE Xplore All Conference Series
subjects Analytical models
Atmospheric modeling
Data models
data-driven control
Energy consumption
open data
Temperature
Training
Ventilation
title Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data-Driven%20Control%20of%20Mechanical%20Ventilation%20Using%20Open%20Data%20Environmental%20Factors&rft.btitle=2023%209th%20International%20Conference%20on%20Applied%20System%20Innovation%20(ICASI)&rft.au=Hsu,%20Hsieh-Chih&rft.date=2023-04-21&rft.spage=80&rft.epage=82&rft.pages=80-82&rft.eissn=2768-4156&rft_id=info:doi/10.1109/ICASI57738.2023.10179512&rft.eisbn=9798350398380&rft_dat=%3Cieee_CHZPO%3E10179512%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-7df823e1f3b9c3f8c3accbe180f281cff426dc239db5629bea7f83412b11e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10179512&rfr_iscdi=true