Loading…
Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors
Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework a...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 82 |
container_issue | |
container_start_page | 80 |
container_title | |
container_volume | |
creator | Hsu, Hsieh-Chih Pan, Chen-Yu |
description | Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%. |
doi_str_mv | 10.1109/ICASI57738.2023.10179512 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10179512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10179512</ieee_id><sourcerecordid>10179512</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-7df823e1f3b9c3f8c3accbe180f281cff426dc239db5629bea7f83412b11e3e3</originalsourceid><addsrcrecordid>eNo1kMFOwzAQRA0SElXJH3DwD6R4vUlsH1HaQqWiHlq4Vo5jg1HqVI5Vib_HCLjMHObNajWEUGALAKYeNu3jflMLgXLBGccFMBCqBn5FCiWUxJphVsmuyYyLRpYV1M0tKabpkzGGPKdNNSP7pU66XEZ_sYG2Y0hxHOjo6Is1Hzp4owf6ZkPyg05-DPR18uGd7s4Z_inSVbj4OIZTRjK51iaNcbojN04Pky3-fE4O69WhfS63u6f89bb0ACqVoneSowWHnTLopEFtTGdBMsclGOcq3vSGo-q7uuGqs1o4iRXwDsCixTm5_z3rrbXHc_QnHb-O_zPgN_NHUv4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</title><source>IEEE Xplore All Conference Series</source><creator>Hsu, Hsieh-Chih ; Pan, Chen-Yu</creator><creatorcontrib>Hsu, Hsieh-Chih ; Pan, Chen-Yu</creatorcontrib><description>Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.</description><identifier>EISSN: 2768-4156</identifier><identifier>EISBN: 9798350398380</identifier><identifier>DOI: 10.1109/ICASI57738.2023.10179512</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Atmospheric modeling ; Data models ; data-driven control ; Energy consumption ; open data ; Temperature ; Training ; Ventilation</subject><ispartof>2023 9th International Conference on Applied System Innovation (ICASI), 2023, p.80-82</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10179512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27916,54546,54923</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10179512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsu, Hsieh-Chih</creatorcontrib><creatorcontrib>Pan, Chen-Yu</creatorcontrib><title>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</title><title>2023 9th International Conference on Applied System Innovation (ICASI)</title><addtitle>ICASI</addtitle><description>Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.</description><subject>Analytical models</subject><subject>Atmospheric modeling</subject><subject>Data models</subject><subject>data-driven control</subject><subject>Energy consumption</subject><subject>open data</subject><subject>Temperature</subject><subject>Training</subject><subject>Ventilation</subject><issn>2768-4156</issn><isbn>9798350398380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMFOwzAQRA0SElXJH3DwD6R4vUlsH1HaQqWiHlq4Vo5jg1HqVI5Vib_HCLjMHObNajWEUGALAKYeNu3jflMLgXLBGccFMBCqBn5FCiWUxJphVsmuyYyLRpYV1M0tKabpkzGGPKdNNSP7pU66XEZ_sYG2Y0hxHOjo6Is1Hzp4owf6ZkPyg05-DPR18uGd7s4Z_inSVbj4OIZTRjK51iaNcbojN04Pky3-fE4O69WhfS63u6f89bb0ACqVoneSowWHnTLopEFtTGdBMsclGOcq3vSGo-q7uuGqs1o4iRXwDsCixTm5_z3rrbXHc_QnHb-O_zPgN_NHUv4</recordid><startdate>20230421</startdate><enddate>20230421</enddate><creator>Hsu, Hsieh-Chih</creator><creator>Pan, Chen-Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230421</creationdate><title>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</title><author>Hsu, Hsieh-Chih ; Pan, Chen-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-7df823e1f3b9c3f8c3accbe180f281cff426dc239db5629bea7f83412b11e3e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Atmospheric modeling</topic><topic>Data models</topic><topic>data-driven control</topic><topic>Energy consumption</topic><topic>open data</topic><topic>Temperature</topic><topic>Training</topic><topic>Ventilation</topic><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Hsieh-Chih</creatorcontrib><creatorcontrib>Pan, Chen-Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsu, Hsieh-Chih</au><au>Pan, Chen-Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors</atitle><btitle>2023 9th International Conference on Applied System Innovation (ICASI)</btitle><stitle>ICASI</stitle><date>2023-04-21</date><risdate>2023</risdate><spage>80</spage><epage>82</epage><pages>80-82</pages><eissn>2768-4156</eissn><eisbn>9798350398380</eisbn><abstract>Indoor air quality reduces pollutants through different ventilation methods. Using different ventilation strategies is the focus of most scholars with limited resources. Therefore, we use outdoor environmental factors to data-driven control mechanical ventilation facilities.This proposed framework also optimizes the deep learning model (LSTM) through clustering analysis, and through cross-validation, the accuracy of the model is 97.45%. At the same time, this model can reduce energy consumption by 53%.</abstract><pub>IEEE</pub><doi>10.1109/ICASI57738.2023.10179512</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2768-4156 |
ispartof | 2023 9th International Conference on Applied System Innovation (ICASI), 2023, p.80-82 |
issn | 2768-4156 |
language | eng |
recordid | cdi_ieee_primary_10179512 |
source | IEEE Xplore All Conference Series |
subjects | Analytical models Atmospheric modeling Data models data-driven control Energy consumption open data Temperature Training Ventilation |
title | Data-Driven Control of Mechanical Ventilation Using Open Data Environmental Factors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data-Driven%20Control%20of%20Mechanical%20Ventilation%20Using%20Open%20Data%20Environmental%20Factors&rft.btitle=2023%209th%20International%20Conference%20on%20Applied%20System%20Innovation%20(ICASI)&rft.au=Hsu,%20Hsieh-Chih&rft.date=2023-04-21&rft.spage=80&rft.epage=82&rft.pages=80-82&rft.eissn=2768-4156&rft_id=info:doi/10.1109/ICASI57738.2023.10179512&rft.eisbn=9798350398380&rft_dat=%3Cieee_CHZPO%3E10179512%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-7df823e1f3b9c3f8c3accbe180f281cff426dc239db5629bea7f83412b11e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10179512&rfr_iscdi=true |