Loading…
Cooperative Perception With Learning-Based V2V Communications
Cooperative perception has been widely used in autonomous driving to alleviate the inherent limitation of single automated vehicle perception. To enable cooperation, vehicle-to-vehicle (V2V) communication plays an indispensable role. This work analyzes the performance of cooperative perception accou...
Saved in:
Published in: | IEEE wireless communications letters 2023-11, Vol.12 (11), p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cooperative perception has been widely used in autonomous driving to alleviate the inherent limitation of single automated vehicle perception. To enable cooperation, vehicle-to-vehicle (V2V) communication plays an indispensable role. This work analyzes the performance of cooperative perception accounting for communications channel impairments. Different fusion methods and channel impairments are evaluated. A new late fusion scheme is proposed to leverage the robustness of intermediate features. In order to compress the data size incurred by cooperation, a convolution neural network-based autoencoder is adopted. Numerical results demonstrate that intermediate fusion is more robust to channel impairments than early fusion and late fusion, when the SNR is greater than 0 dB. Also, the proposed fusion scheme outperforms the conventional late fusion using detection outputs, and autoencoder provides a good compromise between detection accuracy and bandwidth usage. |
---|---|
ISSN: | 2162-2337 2162-2345 |
DOI: | 10.1109/LWC.2023.3295612 |