Loading…
Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)
This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3858 |
container_issue | |
container_start_page | 3857 |
container_title | |
container_volume | |
creator | Chen, Yong Zhang, Hui Tian, Zhibao Wang, Jun Zhang, Dell Li, Xuelong |
description | This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs. |
doi_str_mv | 10.1109/ICDE55515.2023.00355 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10184835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184835</ieee_id><sourcerecordid>10184835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-57d819ad9cd40cd4225adc409f03186a8dee8c3af3c1b0bf3bab913218eefcca3</originalsourceid><addsrcrecordid>eNotkEFLAzEUhKMgWGr_QQ856mHre8mmu_FWtltbaPFSwVvJJm9tpM3KJoL9967owDAMDN9hGJsizBBBP26qZa2UQjUTIOQMQCp1xSa60KVUIIUQhb5mIyELlYGYv92ySYwfMEjniApGrKnD0QRLji99tD0l4ruvU_LZuXPmxNcmHn14f-K7ridedSGm3viQIr9Q4luKke_9mXjqhmL6wO_r70TBDbxF87u16eGO3bTmFGnyn2P2uqr31TrbvjxvqsU284g6ZapwJWrjtHU5DBZCGWdz0C1ILOemdESllaaVFhtoWtmYRqMUWBK11ho5ZtM_rieiw2fvz6a_HBCwzIc35A9mqldu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Yong ; Zhang, Hui ; Tian, Zhibao ; Wang, Jun ; Zhang, Dell ; Li, Xuelong</creator><creatorcontrib>Chen, Yong ; Zhang, Hui ; Tian, Zhibao ; Wang, Jun ; Zhang, Dell ; Li, Xuelong</creatorcontrib><description>This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.</description><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 9798350322279</identifier><identifier>DOI: 10.1109/ICDE55515.2023.00355</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binary codes ; Closed-form solutions ; Computational efficiency ; cross-view retrieval ; Data engineering ; Decorrelation ; discrete optimization ; Hash functions ; Iterative algorithms ; learning to hash ; semantics alignment</subject><ispartof>2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, p.3857-3858</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Tian, Zhibao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhang, Dell</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><title>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</title><title>2023 IEEE 39th International Conference on Data Engineering (ICDE)</title><addtitle>ICDE</addtitle><description>This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.</description><subject>Binary codes</subject><subject>Closed-form solutions</subject><subject>Computational efficiency</subject><subject>cross-view retrieval</subject><subject>Data engineering</subject><subject>Decorrelation</subject><subject>discrete optimization</subject><subject>Hash functions</subject><subject>Iterative algorithms</subject><subject>learning to hash</subject><subject>semantics alignment</subject><issn>2375-026X</issn><isbn>9798350322279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEFLAzEUhKMgWGr_QQ856mHre8mmu_FWtltbaPFSwVvJJm9tpM3KJoL9967owDAMDN9hGJsizBBBP26qZa2UQjUTIOQMQCp1xSa60KVUIIUQhb5mIyELlYGYv92ySYwfMEjniApGrKnD0QRLji99tD0l4ruvU_LZuXPmxNcmHn14f-K7ridedSGm3viQIr9Q4luKke_9mXjqhmL6wO_r70TBDbxF87u16eGO3bTmFGnyn2P2uqr31TrbvjxvqsU284g6ZapwJWrjtHU5DBZCGWdz0C1ILOemdESllaaVFhtoWtmYRqMUWBK11ho5ZtM_rieiw2fvz6a_HBCwzIc35A9mqldu</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Chen, Yong</creator><creator>Zhang, Hui</creator><creator>Tian, Zhibao</creator><creator>Wang, Jun</creator><creator>Zhang, Dell</creator><creator>Li, Xuelong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202304</creationdate><title>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</title><author>Chen, Yong ; Zhang, Hui ; Tian, Zhibao ; Wang, Jun ; Zhang, Dell ; Li, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-57d819ad9cd40cd4225adc409f03186a8dee8c3af3c1b0bf3bab913218eefcca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binary codes</topic><topic>Closed-form solutions</topic><topic>Computational efficiency</topic><topic>cross-view retrieval</topic><topic>Data engineering</topic><topic>Decorrelation</topic><topic>discrete optimization</topic><topic>Hash functions</topic><topic>Iterative algorithms</topic><topic>learning to hash</topic><topic>semantics alignment</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Tian, Zhibao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhang, Dell</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yong</au><au>Zhang, Hui</au><au>Tian, Zhibao</au><au>Wang, Jun</au><au>Zhang, Dell</au><au>Li, Xuelong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</atitle><btitle>2023 IEEE 39th International Conference on Data Engineering (ICDE)</btitle><stitle>ICDE</stitle><date>2023-04</date><risdate>2023</risdate><spage>3857</spage><epage>3858</epage><pages>3857-3858</pages><eissn>2375-026X</eissn><eisbn>9798350322279</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.</abstract><pub>IEEE</pub><doi>10.1109/ICDE55515.2023.00355</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2375-026X |
ispartof | 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, p.3857-3858 |
issn | 2375-026X |
language | eng |
recordid | cdi_ieee_primary_10184835 |
source | IEEE Xplore All Conference Series |
subjects | Binary codes Closed-form solutions Computational efficiency cross-view retrieval Data engineering Decorrelation discrete optimization Hash functions Iterative algorithms learning to hash semantics alignment |
title | Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced%20Discrete%20Multi-modal%20Hashing:%20More%20Constraints%20yet%20Less%20Time%20to%20Learn%20(Extended%20Abstract)&rft.btitle=2023%20IEEE%2039th%20International%20Conference%20on%20Data%20Engineering%20(ICDE)&rft.au=Chen,%20Yong&rft.date=2023-04&rft.spage=3857&rft.epage=3858&rft.pages=3857-3858&rft.eissn=2375-026X&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDE55515.2023.00355&rft.eisbn=9798350322279&rft_dat=%3Cieee_CHZPO%3E10184835%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-57d819ad9cd40cd4225adc409f03186a8dee8c3af3c1b0bf3bab913218eefcca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10184835&rfr_iscdi=true |