Loading…

Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)

This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Yong, Zhang, Hui, Tian, Zhibao, Wang, Jun, Zhang, Dell, Li, Xuelong
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3858
container_issue
container_start_page 3857
container_title
container_volume
creator Chen, Yong
Zhang, Hui
Tian, Zhibao
Wang, Jun
Zhang, Dell
Li, Xuelong
description This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.
doi_str_mv 10.1109/ICDE55515.2023.00355
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10184835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10184835</ieee_id><sourcerecordid>10184835</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-57d819ad9cd40cd4225adc409f03186a8dee8c3af3c1b0bf3bab913218eefcca3</originalsourceid><addsrcrecordid>eNotkEFLAzEUhKMgWGr_QQ856mHre8mmu_FWtltbaPFSwVvJJm9tpM3KJoL9967owDAMDN9hGJsizBBBP26qZa2UQjUTIOQMQCp1xSa60KVUIIUQhb5mIyELlYGYv92ySYwfMEjniApGrKnD0QRLji99tD0l4ruvU_LZuXPmxNcmHn14f-K7ridedSGm3viQIr9Q4luKke_9mXjqhmL6wO_r70TBDbxF87u16eGO3bTmFGnyn2P2uqr31TrbvjxvqsU284g6ZapwJWrjtHU5DBZCGWdz0C1ILOemdESllaaVFhtoWtmYRqMUWBK11ho5ZtM_rieiw2fvz6a_HBCwzIc35A9mqldu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Yong ; Zhang, Hui ; Tian, Zhibao ; Wang, Jun ; Zhang, Dell ; Li, Xuelong</creator><creatorcontrib>Chen, Yong ; Zhang, Hui ; Tian, Zhibao ; Wang, Jun ; Zhang, Dell ; Li, Xuelong</creatorcontrib><description>This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.</description><identifier>EISSN: 2375-026X</identifier><identifier>EISBN: 9798350322279</identifier><identifier>DOI: 10.1109/ICDE55515.2023.00355</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Binary codes ; Closed-form solutions ; Computational efficiency ; cross-view retrieval ; Data engineering ; Decorrelation ; discrete optimization ; Hash functions ; Iterative algorithms ; learning to hash ; semantics alignment</subject><ispartof>2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, p.3857-3858</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10184835$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10184835$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Tian, Zhibao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhang, Dell</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><title>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</title><title>2023 IEEE 39th International Conference on Data Engineering (ICDE)</title><addtitle>ICDE</addtitle><description>This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.</description><subject>Binary codes</subject><subject>Closed-form solutions</subject><subject>Computational efficiency</subject><subject>cross-view retrieval</subject><subject>Data engineering</subject><subject>Decorrelation</subject><subject>discrete optimization</subject><subject>Hash functions</subject><subject>Iterative algorithms</subject><subject>learning to hash</subject><subject>semantics alignment</subject><issn>2375-026X</issn><isbn>9798350322279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEFLAzEUhKMgWGr_QQ856mHre8mmu_FWtltbaPFSwVvJJm9tpM3KJoL9967owDAMDN9hGJsizBBBP26qZa2UQjUTIOQMQCp1xSa60KVUIIUQhb5mIyELlYGYv92ySYwfMEjniApGrKnD0QRLji99tD0l4ruvU_LZuXPmxNcmHn14f-K7ridedSGm3viQIr9Q4luKke_9mXjqhmL6wO_r70TBDbxF87u16eGO3bTmFGnyn2P2uqr31TrbvjxvqsU284g6ZapwJWrjtHU5DBZCGWdz0C1ILOemdESllaaVFhtoWtmYRqMUWBK11ho5ZtM_rieiw2fvz6a_HBCwzIc35A9mqldu</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Chen, Yong</creator><creator>Zhang, Hui</creator><creator>Tian, Zhibao</creator><creator>Wang, Jun</creator><creator>Zhang, Dell</creator><creator>Li, Xuelong</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202304</creationdate><title>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</title><author>Chen, Yong ; Zhang, Hui ; Tian, Zhibao ; Wang, Jun ; Zhang, Dell ; Li, Xuelong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-57d819ad9cd40cd4225adc409f03186a8dee8c3af3c1b0bf3bab913218eefcca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binary codes</topic><topic>Closed-form solutions</topic><topic>Computational efficiency</topic><topic>cross-view retrieval</topic><topic>Data engineering</topic><topic>Decorrelation</topic><topic>discrete optimization</topic><topic>Hash functions</topic><topic>Iterative algorithms</topic><topic>learning to hash</topic><topic>semantics alignment</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yong</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Tian, Zhibao</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Zhang, Dell</creatorcontrib><creatorcontrib>Li, Xuelong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yong</au><au>Zhang, Hui</au><au>Tian, Zhibao</au><au>Wang, Jun</au><au>Zhang, Dell</au><au>Li, Xuelong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)</atitle><btitle>2023 IEEE 39th International Conference on Data Engineering (ICDE)</btitle><stitle>ICDE</stitle><date>2023-04</date><risdate>2023</risdate><spage>3857</spage><epage>3858</epage><pages>3857-3858</pages><eissn>2375-026X</eissn><eisbn>9798350322279</eisbn><coden>IEEPAD</coden><abstract>This paper proposes a novel method, Enhanced Discrete Multi-modal Hashing (EDMH), which learns binary codes and hash functions simultaneously from the pairwise similarity matrix of data for large-scale cross-view retrieval. EDMH distinguishes itself from existing methods by considering not just the binarization constraint but also the balance and decorrelation constraints. Although those additional discrete constraints make the optimization problem of EDMH look a lot more complicated, we are actually able to develop a fast iterative learning algorithm in the alternating optimization framework for it, as after introducing a couple of auxiliary variables each subproblem of optimization turns out to have closed-form solutions. It has been confirmed by extensive experiments that EDMH can consistently deliver better retrieval performances than state-of-the-art MH methods at lower computational costs.</abstract><pub>IEEE</pub><doi>10.1109/ICDE55515.2023.00355</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2375-026X
ispartof 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, p.3857-3858
issn 2375-026X
language eng
recordid cdi_ieee_primary_10184835
source IEEE Xplore All Conference Series
subjects Binary codes
Closed-form solutions
Computational efficiency
cross-view retrieval
Data engineering
Decorrelation
discrete optimization
Hash functions
Iterative algorithms
learning to hash
semantics alignment
title Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time to Learn (Extended Abstract)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Enhanced%20Discrete%20Multi-modal%20Hashing:%20More%20Constraints%20yet%20Less%20Time%20to%20Learn%20(Extended%20Abstract)&rft.btitle=2023%20IEEE%2039th%20International%20Conference%20on%20Data%20Engineering%20(ICDE)&rft.au=Chen,%20Yong&rft.date=2023-04&rft.spage=3857&rft.epage=3858&rft.pages=3857-3858&rft.eissn=2375-026X&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICDE55515.2023.00355&rft.eisbn=9798350322279&rft_dat=%3Cieee_CHZPO%3E10184835%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-57d819ad9cd40cd4225adc409f03186a8dee8c3af3c1b0bf3bab913218eefcca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10184835&rfr_iscdi=true