Loading…

Building a digital twin for intelligent optical networks [Invited Tutorial]

To support the development of intelligent optical networks, accurate modeling of the physical layer is crucial. Digital twin (DT) modeling, which relies on continuous learning with real-time data, provides a new paradigm to build a virtual replica of the physical layer with a significant improvement...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optical communications and networking 2023-08, Vol.15 (8), p.C242-C262
Main Authors: Zhuge, Qunbi, Liu, Xiaomin, Zhang, Yihao, Cai, Meng, Liu, Yichen, Qiu, Qizhi, Zhong, Xueying, Wu, Jiaping, Gao, Ruoxuan, Yi, Lilin, Hu, Weisheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503
cites cdi_FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503
container_end_page C262
container_issue 8
container_start_page C242
container_title Journal of optical communications and networking
container_volume 15
creator Zhuge, Qunbi
Liu, Xiaomin
Zhang, Yihao
Cai, Meng
Liu, Yichen
Qiu, Qizhi
Zhong, Xueying
Wu, Jiaping
Gao, Ruoxuan
Yi, Lilin
Hu, Weisheng
description To support the development of intelligent optical networks, accurate modeling of the physical layer is crucial. Digital twin (DT) modeling, which relies on continuous learning with real-time data, provides a new paradigm to build a virtual replica of the physical layer with a significant improvement in accuracy and reliability. In addition, DT models will be able to forecast future change by analyzing historical data. In this tutorial, we introduce and discuss three key technologies, including modeling, telemetry, and self-learning, to build a DT for optical networks. The principles and progress of these technologies on major impairments that affect the quality of transmission are presented, and a discussion on the remaining challenges and future research directions is provided.
doi_str_mv 10.1364/JOCN.483600
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10187397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10187397</ieee_id><sourcerecordid>2839522994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKsnrx4CHmVrPnazyVGLH9ViL_UkEtJNUlLXpCZZi__elRWROczA-zDDPACcYjTBlJWXD4vp06TklCG0B0ZYlLRAjIr9v5mgQ3CU0gYhVmNcjcDjdeda7fwaKqjd2mXVwrxzHtoQofPZtK1bG59h2GbX9KE3eRfiW4IvM__pstFw2eUQnWpfj8GBVW0yJ799DJ5vb5bT-2K-uJtNr-ZFQzjJBWF9GUtwWRlSKYMwKxtNBUKKK4005dYSwjTWmq9qYVm94rixStdViUyF6BicD3u3MXx0JmW5CV30_UlJOBUVIaL_dgwuBqqJIaVorNxG967il8RI_tiSP7bkYKunzwbaGWP-kZjXVNT0G1itZZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839522994</pqid></control><display><type>article</type><title>Building a digital twin for intelligent optical networks [Invited Tutorial]</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhuge, Qunbi ; Liu, Xiaomin ; Zhang, Yihao ; Cai, Meng ; Liu, Yichen ; Qiu, Qizhi ; Zhong, Xueying ; Wu, Jiaping ; Gao, Ruoxuan ; Yi, Lilin ; Hu, Weisheng</creator><creatorcontrib>Zhuge, Qunbi ; Liu, Xiaomin ; Zhang, Yihao ; Cai, Meng ; Liu, Yichen ; Qiu, Qizhi ; Zhong, Xueying ; Wu, Jiaping ; Gao, Ruoxuan ; Yi, Lilin ; Hu, Weisheng</creatorcontrib><description>To support the development of intelligent optical networks, accurate modeling of the physical layer is crucial. Digital twin (DT) modeling, which relies on continuous learning with real-time data, provides a new paradigm to build a virtual replica of the physical layer with a significant improvement in accuracy and reliability. In addition, DT models will be able to forecast future change by analyzing historical data. In this tutorial, we introduce and discuss three key technologies, including modeling, telemetry, and self-learning, to build a DT for optical networks. The principles and progress of these technologies on major impairments that affect the quality of transmission are presented, and a discussion on the remaining challenges and future research directions is provided.</description><identifier>ISSN: 1943-0620</identifier><identifier>EISSN: 1943-0639</identifier><identifier>DOI: 10.1364/JOCN.483600</identifier><identifier>CODEN: JOCNBB</identifier><language>eng</language><publisher>Piscataway: Optica Publishing Group</publisher><subject>Analytical models ; Data models ; Digital twins ; Learning ; Modelling ; Networks ; Optical communication ; Optical fiber networks ; Physical layer ; Synchronization ; Telemetry ; Tutorials</subject><ispartof>Journal of optical communications and networking, 2023-08, Vol.15 (8), p.C242-C262</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503</citedby><cites>FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503</cites><orcidid>0000-0002-6039-9063 ; 0000-0002-2437-0220 ; 0000-0002-6168-2688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10187397$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Zhuge, Qunbi</creatorcontrib><creatorcontrib>Liu, Xiaomin</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Cai, Meng</creatorcontrib><creatorcontrib>Liu, Yichen</creatorcontrib><creatorcontrib>Qiu, Qizhi</creatorcontrib><creatorcontrib>Zhong, Xueying</creatorcontrib><creatorcontrib>Wu, Jiaping</creatorcontrib><creatorcontrib>Gao, Ruoxuan</creatorcontrib><creatorcontrib>Yi, Lilin</creatorcontrib><creatorcontrib>Hu, Weisheng</creatorcontrib><title>Building a digital twin for intelligent optical networks [Invited Tutorial]</title><title>Journal of optical communications and networking</title><addtitle>jocn</addtitle><description>To support the development of intelligent optical networks, accurate modeling of the physical layer is crucial. Digital twin (DT) modeling, which relies on continuous learning with real-time data, provides a new paradigm to build a virtual replica of the physical layer with a significant improvement in accuracy and reliability. In addition, DT models will be able to forecast future change by analyzing historical data. In this tutorial, we introduce and discuss three key technologies, including modeling, telemetry, and self-learning, to build a DT for optical networks. The principles and progress of these technologies on major impairments that affect the quality of transmission are presented, and a discussion on the remaining challenges and future research directions is provided.</description><subject>Analytical models</subject><subject>Data models</subject><subject>Digital twins</subject><subject>Learning</subject><subject>Modelling</subject><subject>Networks</subject><subject>Optical communication</subject><subject>Optical fiber networks</subject><subject>Physical layer</subject><subject>Synchronization</subject><subject>Telemetry</subject><subject>Tutorials</subject><issn>1943-0620</issn><issn>1943-0639</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKsnrx4CHmVrPnazyVGLH9ViL_UkEtJNUlLXpCZZi__elRWROczA-zDDPACcYjTBlJWXD4vp06TklCG0B0ZYlLRAjIr9v5mgQ3CU0gYhVmNcjcDjdeda7fwaKqjd2mXVwrxzHtoQofPZtK1bG59h2GbX9KE3eRfiW4IvM__pstFw2eUQnWpfj8GBVW0yJ799DJ5vb5bT-2K-uJtNr-ZFQzjJBWF9GUtwWRlSKYMwKxtNBUKKK4005dYSwjTWmq9qYVm94rixStdViUyF6BicD3u3MXx0JmW5CV30_UlJOBUVIaL_dgwuBqqJIaVorNxG967il8RI_tiSP7bkYKunzwbaGWP-kZjXVNT0G1itZZU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Zhuge, Qunbi</creator><creator>Liu, Xiaomin</creator><creator>Zhang, Yihao</creator><creator>Cai, Meng</creator><creator>Liu, Yichen</creator><creator>Qiu, Qizhi</creator><creator>Zhong, Xueying</creator><creator>Wu, Jiaping</creator><creator>Gao, Ruoxuan</creator><creator>Yi, Lilin</creator><creator>Hu, Weisheng</creator><general>Optica Publishing Group</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6039-9063</orcidid><orcidid>https://orcid.org/0000-0002-2437-0220</orcidid><orcidid>https://orcid.org/0000-0002-6168-2688</orcidid></search><sort><creationdate>20230801</creationdate><title>Building a digital twin for intelligent optical networks [Invited Tutorial]</title><author>Zhuge, Qunbi ; Liu, Xiaomin ; Zhang, Yihao ; Cai, Meng ; Liu, Yichen ; Qiu, Qizhi ; Zhong, Xueying ; Wu, Jiaping ; Gao, Ruoxuan ; Yi, Lilin ; Hu, Weisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Data models</topic><topic>Digital twins</topic><topic>Learning</topic><topic>Modelling</topic><topic>Networks</topic><topic>Optical communication</topic><topic>Optical fiber networks</topic><topic>Physical layer</topic><topic>Synchronization</topic><topic>Telemetry</topic><topic>Tutorials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuge, Qunbi</creatorcontrib><creatorcontrib>Liu, Xiaomin</creatorcontrib><creatorcontrib>Zhang, Yihao</creatorcontrib><creatorcontrib>Cai, Meng</creatorcontrib><creatorcontrib>Liu, Yichen</creatorcontrib><creatorcontrib>Qiu, Qizhi</creatorcontrib><creatorcontrib>Zhong, Xueying</creatorcontrib><creatorcontrib>Wu, Jiaping</creatorcontrib><creatorcontrib>Gao, Ruoxuan</creatorcontrib><creatorcontrib>Yi, Lilin</creatorcontrib><creatorcontrib>Hu, Weisheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optical communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuge, Qunbi</au><au>Liu, Xiaomin</au><au>Zhang, Yihao</au><au>Cai, Meng</au><au>Liu, Yichen</au><au>Qiu, Qizhi</au><au>Zhong, Xueying</au><au>Wu, Jiaping</au><au>Gao, Ruoxuan</au><au>Yi, Lilin</au><au>Hu, Weisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a digital twin for intelligent optical networks [Invited Tutorial]</atitle><jtitle>Journal of optical communications and networking</jtitle><stitle>jocn</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>8</issue><spage>C242</spage><epage>C262</epage><pages>C242-C262</pages><issn>1943-0620</issn><eissn>1943-0639</eissn><coden>JOCNBB</coden><abstract>To support the development of intelligent optical networks, accurate modeling of the physical layer is crucial. Digital twin (DT) modeling, which relies on continuous learning with real-time data, provides a new paradigm to build a virtual replica of the physical layer with a significant improvement in accuracy and reliability. In addition, DT models will be able to forecast future change by analyzing historical data. In this tutorial, we introduce and discuss three key technologies, including modeling, telemetry, and self-learning, to build a DT for optical networks. The principles and progress of these technologies on major impairments that affect the quality of transmission are presented, and a discussion on the remaining challenges and future research directions is provided.</abstract><cop>Piscataway</cop><pub>Optica Publishing Group</pub><doi>10.1364/JOCN.483600</doi><orcidid>https://orcid.org/0000-0002-6039-9063</orcidid><orcidid>https://orcid.org/0000-0002-2437-0220</orcidid><orcidid>https://orcid.org/0000-0002-6168-2688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1943-0620
ispartof Journal of optical communications and networking, 2023-08, Vol.15 (8), p.C242-C262
issn 1943-0620
1943-0639
language eng
recordid cdi_ieee_primary_10187397
source IEEE Electronic Library (IEL) Journals
subjects Analytical models
Data models
Digital twins
Learning
Modelling
Networks
Optical communication
Optical fiber networks
Physical layer
Synchronization
Telemetry
Tutorials
title Building a digital twin for intelligent optical networks [Invited Tutorial]
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%20digital%20twin%20for%20intelligent%20optical%20networks%20%5BInvited%20Tutorial%5D&rft.jtitle=Journal%20of%20optical%20communications%20and%20networking&rft.au=Zhuge,%20Qunbi&rft.date=2023-08-01&rft.volume=15&rft.issue=8&rft.spage=C242&rft.epage=C262&rft.pages=C242-C262&rft.issn=1943-0620&rft.eissn=1943-0639&rft.coden=JOCNBB&rft_id=info:doi/10.1364/JOCN.483600&rft_dat=%3Cproquest_ieee_%3E2839522994%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-26262ef2145e25ae0164cd3900a8ad0d38ff226d1dd8b79f67b81cfad7540e503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839522994&rft_id=info:pmid/&rft_ieee_id=10187397&rfr_iscdi=true