Loading…

Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels

Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming sym...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2023-09, Vol.9 (3), p.1-1
Main Authors: Gomez, Jorge Torres, Hofmann, Pit, Fitzek, Frank H.P., Dressler, Falko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53
cites cdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53
container_end_page 1
container_issue 3
container_start_page 1
container_title IEEE transactions on molecular, biological, and multi-scale communications
container_volume 9
creator Gomez, Jorge Torres
Hofmann, Pit
Fitzek, Frank H.P.
Dressler, Falko
description Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.
doi_str_mv 10.1109/TMBMC.2023.3297135
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10188873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188873</ieee_id><sourcerecordid>2866484987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EElXpCyAGS8wtviSxPUK4Si0MlIXFcmxHuDhxsRNB3570MnT6j_RfjvQBcInRDGMkbpaLu0U5I4jQGSWCYZqfgBGhjEwJKvDp0X0OJimtEEK4QIiyYgQ-H_7WXrlWVc67bgNDDV9tH5UfpPsN8TvBOkT4vmmq4OG97azuXGiha-EieKt7ryIsQ9P0rdNqZ5Vfqm2tTxfgrFY-2clBx-Dj8WFZPk_nb08v5e18qokouqk2Oc9YoYVQNEdcCI4NskYbQeqsQhlVlgyOQUwYUnOEeM2ynOuKEUO4yekYXO931zH89DZ1chX62A4vJeFFkfFMcDakyD6lY0gp2lquo2tU3EiM5Baj3GGUW4zygHEoXe1Lzlp7VMCcD5P0H26ibpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866484987</pqid></control><display><type>article</type><title>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gomez, Jorge Torres ; Hofmann, Pit ; Fitzek, Frank H.P. ; Dressler, Falko</creator><creatorcontrib>Gomez, Jorge Torres ; Hofmann, Pit ; Fitzek, Frank H.P. ; Dressler, Falko</creatorcontrib><description>Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2023.3297135</identifier><identifier>CODEN: ITMBDH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Channel models ; Channels ; Detectors ; Explainable AI ; individual conditional expectation ; local interpretable model-agnostic explanation ; Machine learning ; Mathematical models ; molecular communication ; neural network ; Neural networks ; Receivers ; Symbols ; testbed</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2023-09, Vol.9 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</citedby><cites>FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</cites><orcidid>0000-0001-9523-048X ; 0000-0002-1989-1750 ; 0000-0001-5933-6017 ; 0000-0001-8469-9573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Gomez, Jorge Torres</creatorcontrib><creatorcontrib>Hofmann, Pit</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><creatorcontrib>Dressler, Falko</creatorcontrib><title>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.</description><subject>Artificial neural networks</subject><subject>Channel models</subject><subject>Channels</subject><subject>Detectors</subject><subject>Explainable AI</subject><subject>individual conditional expectation</subject><subject>local interpretable model-agnostic explanation</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>molecular communication</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Receivers</subject><subject>Symbols</subject><subject>testbed</subject><issn>2372-2061</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EElXpCyAGS8wtviSxPUK4Si0MlIXFcmxHuDhxsRNB3570MnT6j_RfjvQBcInRDGMkbpaLu0U5I4jQGSWCYZqfgBGhjEwJKvDp0X0OJimtEEK4QIiyYgQ-H_7WXrlWVc67bgNDDV9tH5UfpPsN8TvBOkT4vmmq4OG97azuXGiha-EieKt7ryIsQ9P0rdNqZ5Vfqm2tTxfgrFY-2clBx-Dj8WFZPk_nb08v5e18qokouqk2Oc9YoYVQNEdcCI4NskYbQeqsQhlVlgyOQUwYUnOEeM2ynOuKEUO4yekYXO931zH89DZ1chX62A4vJeFFkfFMcDakyD6lY0gp2lquo2tU3EiM5Baj3GGUW4zygHEoXe1Lzlp7VMCcD5P0H26ibpg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Gomez, Jorge Torres</creator><creator>Hofmann, Pit</creator><creator>Fitzek, Frank H.P.</creator><creator>Dressler, Falko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9523-048X</orcidid><orcidid>https://orcid.org/0000-0002-1989-1750</orcidid><orcidid>https://orcid.org/0000-0001-5933-6017</orcidid><orcidid>https://orcid.org/0000-0001-8469-9573</orcidid></search><sort><creationdate>20230901</creationdate><title>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</title><author>Gomez, Jorge Torres ; Hofmann, Pit ; Fitzek, Frank H.P. ; Dressler, Falko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Channel models</topic><topic>Channels</topic><topic>Detectors</topic><topic>Explainable AI</topic><topic>individual conditional expectation</topic><topic>local interpretable model-agnostic explanation</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>molecular communication</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Receivers</topic><topic>Symbols</topic><topic>testbed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, Jorge Torres</creatorcontrib><creatorcontrib>Hofmann, Pit</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><creatorcontrib>Dressler, Falko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez, Jorge Torres</au><au>Hofmann, Pit</au><au>Fitzek, Frank H.P.</au><au>Dressler, Falko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>9</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2372-2061</issn><eissn>2372-2061</eissn><coden>ITMBDH</coden><abstract>Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2023.3297135</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9523-048X</orcidid><orcidid>https://orcid.org/0000-0002-1989-1750</orcidid><orcidid>https://orcid.org/0000-0001-5933-6017</orcidid><orcidid>https://orcid.org/0000-0001-8469-9573</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2372-2061
ispartof IEEE transactions on molecular, biological, and multi-scale communications, 2023-09, Vol.9 (3), p.1-1
issn 2372-2061
2372-2061
language eng
recordid cdi_ieee_primary_10188873
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
Channel models
Channels
Detectors
Explainable AI
individual conditional expectation
local interpretable model-agnostic explanation
Machine learning
Mathematical models
molecular communication
neural network
Neural networks
Receivers
Symbols
testbed
title Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explainability%20of%20Neural%20Networks%20for%20Symbol%20Detection%20in%20Molecular%20Communication%20Channels&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Gomez,%20Jorge%20Torres&rft.date=2023-09-01&rft.volume=9&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2372-2061&rft.eissn=2372-2061&rft.coden=ITMBDH&rft_id=info:doi/10.1109/TMBMC.2023.3297135&rft_dat=%3Cproquest_ieee_%3E2866484987%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866484987&rft_id=info:pmid/&rft_ieee_id=10188873&rfr_iscdi=true