Loading…
Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels
Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming sym...
Saved in:
Published in: | IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2023-09, Vol.9 (3), p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53 |
container_end_page | 1 |
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on molecular, biological, and multi-scale communications |
container_volume | 9 |
creator | Gomez, Jorge Torres Hofmann, Pit Fitzek, Frank H.P. Dressler, Falko |
description | Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors. |
doi_str_mv | 10.1109/TMBMC.2023.3297135 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10188873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10188873</ieee_id><sourcerecordid>2866484987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</originalsourceid><addsrcrecordid>eNpNkLtOwzAUhi0EElXpCyAGS8wtviSxPUK4Si0MlIXFcmxHuDhxsRNB3570MnT6j_RfjvQBcInRDGMkbpaLu0U5I4jQGSWCYZqfgBGhjEwJKvDp0X0OJimtEEK4QIiyYgQ-H_7WXrlWVc67bgNDDV9tH5UfpPsN8TvBOkT4vmmq4OG97azuXGiha-EieKt7ryIsQ9P0rdNqZ5Vfqm2tTxfgrFY-2clBx-Dj8WFZPk_nb08v5e18qokouqk2Oc9YoYVQNEdcCI4NskYbQeqsQhlVlgyOQUwYUnOEeM2ynOuKEUO4yekYXO931zH89DZ1chX62A4vJeFFkfFMcDakyD6lY0gp2lquo2tU3EiM5Baj3GGUW4zygHEoXe1Lzlp7VMCcD5P0H26ibpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866484987</pqid></control><display><type>article</type><title>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gomez, Jorge Torres ; Hofmann, Pit ; Fitzek, Frank H.P. ; Dressler, Falko</creator><creatorcontrib>Gomez, Jorge Torres ; Hofmann, Pit ; Fitzek, Frank H.P. ; Dressler, Falko</creatorcontrib><description>Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2023.3297135</identifier><identifier>CODEN: ITMBDH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Channel models ; Channels ; Detectors ; Explainable AI ; individual conditional expectation ; local interpretable model-agnostic explanation ; Machine learning ; Mathematical models ; molecular communication ; neural network ; Neural networks ; Receivers ; Symbols ; testbed</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2023-09, Vol.9 (3), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</citedby><cites>FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</cites><orcidid>0000-0001-9523-048X ; 0000-0002-1989-1750 ; 0000-0001-5933-6017 ; 0000-0001-8469-9573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10188873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Gomez, Jorge Torres</creatorcontrib><creatorcontrib>Hofmann, Pit</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><creatorcontrib>Dressler, Falko</creatorcontrib><title>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.</description><subject>Artificial neural networks</subject><subject>Channel models</subject><subject>Channels</subject><subject>Detectors</subject><subject>Explainable AI</subject><subject>individual conditional expectation</subject><subject>local interpretable model-agnostic explanation</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>molecular communication</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Receivers</subject><subject>Symbols</subject><subject>testbed</subject><issn>2372-2061</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLtOwzAUhi0EElXpCyAGS8wtviSxPUK4Si0MlIXFcmxHuDhxsRNB3570MnT6j_RfjvQBcInRDGMkbpaLu0U5I4jQGSWCYZqfgBGhjEwJKvDp0X0OJimtEEK4QIiyYgQ-H_7WXrlWVc67bgNDDV9tH5UfpPsN8TvBOkT4vmmq4OG97azuXGiha-EieKt7ryIsQ9P0rdNqZ5Vfqm2tTxfgrFY-2clBx-Dj8WFZPk_nb08v5e18qokouqk2Oc9YoYVQNEdcCI4NskYbQeqsQhlVlgyOQUwYUnOEeM2ynOuKEUO4yekYXO931zH89DZ1chX62A4vJeFFkfFMcDakyD6lY0gp2lquo2tU3EiM5Baj3GGUW4zygHEoXe1Lzlp7VMCcD5P0H26ibpg</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Gomez, Jorge Torres</creator><creator>Hofmann, Pit</creator><creator>Fitzek, Frank H.P.</creator><creator>Dressler, Falko</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9523-048X</orcidid><orcidid>https://orcid.org/0000-0002-1989-1750</orcidid><orcidid>https://orcid.org/0000-0001-5933-6017</orcidid><orcidid>https://orcid.org/0000-0001-8469-9573</orcidid></search><sort><creationdate>20230901</creationdate><title>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</title><author>Gomez, Jorge Torres ; Hofmann, Pit ; Fitzek, Frank H.P. ; Dressler, Falko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Channel models</topic><topic>Channels</topic><topic>Detectors</topic><topic>Explainable AI</topic><topic>individual conditional expectation</topic><topic>local interpretable model-agnostic explanation</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>molecular communication</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Receivers</topic><topic>Symbols</topic><topic>testbed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, Jorge Torres</creatorcontrib><creatorcontrib>Hofmann, Pit</creatorcontrib><creatorcontrib>Fitzek, Frank H.P.</creatorcontrib><creatorcontrib>Dressler, Falko</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez, Jorge Torres</au><au>Hofmann, Pit</au><au>Fitzek, Frank H.P.</au><au>Dressler, Falko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>9</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2372-2061</issn><eissn>2372-2061</eissn><coden>ITMBDH</coden><abstract>Recent molecular communication (MC) research suggests machine learning (ML) models for symbol detection, avoiding the unfeasibility of end-to-end channel models. However, ML models are applied as black boxes, lacking proof of correctness of the underlying neural networks (NNs) to detect incoming symbols. This paper studies approaches to the explainability of NNs for symbol detection in MC channels. Based on MC channel models and real testbed measurements, we generate synthesized data and train a NN model to detect of binary transmissions in MC channels. Using the local interpretable model-agnostic explanation (LIME) method and the individual conditional expectation (ICE), the findings in this paper demonstrate the analogy between the trained NN and the standard peak and slope detectors.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2023.3297135</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9523-048X</orcidid><orcidid>https://orcid.org/0000-0002-1989-1750</orcidid><orcidid>https://orcid.org/0000-0001-5933-6017</orcidid><orcidid>https://orcid.org/0000-0001-8469-9573</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2372-2061 |
ispartof | IEEE transactions on molecular, biological, and multi-scale communications, 2023-09, Vol.9 (3), p.1-1 |
issn | 2372-2061 2372-2061 |
language | eng |
recordid | cdi_ieee_primary_10188873 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Artificial neural networks Channel models Channels Detectors Explainable AI individual conditional expectation local interpretable model-agnostic explanation Machine learning Mathematical models molecular communication neural network Neural networks Receivers Symbols testbed |
title | Explainability of Neural Networks for Symbol Detection in Molecular Communication Channels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explainability%20of%20Neural%20Networks%20for%20Symbol%20Detection%20in%20Molecular%20Communication%20Channels&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Gomez,%20Jorge%20Torres&rft.date=2023-09-01&rft.volume=9&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2372-2061&rft.eissn=2372-2061&rft.coden=ITMBDH&rft_id=info:doi/10.1109/TMBMC.2023.3297135&rft_dat=%3Cproquest_ieee_%3E2866484987%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-cd58476c99a35089981d0edcd92f4b043ae2a35d079d2f8008f7458cb72d28d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866484987&rft_id=info:pmid/&rft_ieee_id=10188873&rfr_iscdi=true |