Loading…

Simulation of propagation in a realistic-geometry computer heart model with parallel processing

The simulation of the propagation of electrical activity in a realistic-geometry computer model of the ventricles of the human heart using the governing reaction-diffusion equation is described. Each model point is represented by the phase 1 Luo-Rudy membrane model, appropriately modified to represe...

Full description

Saved in:
Bibliographic Details
Main Authors: Trudel, M.-C., Gulrajani, R.M., Leon, L.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 362 vol.1
container_issue
container_start_page 359
container_title
container_volume 1
creator Trudel, M.-C.
Gulrajani, R.M.
Leon, L.J.
description The simulation of the propagation of electrical activity in a realistic-geometry computer model of the ventricles of the human heart using the governing reaction-diffusion equation is described. Each model point is represented by the phase 1 Luo-Rudy membrane model, appropriately modified to represent human action potentials. A separate longer-duration action potential waveform was used for the M cells found in the ventricular mid-wall. Cardiac fiber rotation across the ventricular wall was implemented via an analytic equation, resulting in a spatially-varying anisotropic conductivity tensor and consequently anisotropic propagation. Since the model comprises approximately 12 million points, parallel processing was used to cut down on simulation time. The model generated acceptably-normal electrocardiograms, vectorcardiograms and body surface potential maps on the surface of a numerical human torso model. Interestingly, it was found that the intrinsic difference in action potential duration between M cells and other myocardial cells was greatly diminished due to electrotonic coupling.
doi_str_mv 10.1109/IEMBS.2001.1018934
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1018934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1018934</ieee_id><sourcerecordid>1018934</sourcerecordid><originalsourceid>FETCH-ieee_primary_10189343</originalsourceid><addsrcrecordid>eNp9j8FqwzAQREWaQkPjH2gu-wN2tZYdW9eWhPbQU3rozQh346hIlpAUSv6-guacYWB4DAwMY0_IK0Qun993Hy-HquYcK-TYS9Es2Arbti-bLbZ3rJBdz7NFVyO2y9xx2ZTbvvt6YEWMPzxLyEbIesWGg7Zno5J2M7gj-OC8mv5Rz6AgkDI6Jj2WEzlLKVxgdNafEwU4kQoJrPsmA786ncCroIzJlGdGilHP05rdH5WJVFzzkW32u8_Xt1IT0eCDtipchusNcbv9AyqzSgw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simulation of propagation in a realistic-geometry computer heart model with parallel processing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Trudel, M.-C. ; Gulrajani, R.M. ; Leon, L.J.</creator><creatorcontrib>Trudel, M.-C. ; Gulrajani, R.M. ; Leon, L.J.</creatorcontrib><description>The simulation of the propagation of electrical activity in a realistic-geometry computer model of the ventricles of the human heart using the governing reaction-diffusion equation is described. Each model point is represented by the phase 1 Luo-Rudy membrane model, appropriately modified to represent human action potentials. A separate longer-duration action potential waveform was used for the M cells found in the ventricular mid-wall. Cardiac fiber rotation across the ventricular wall was implemented via an analytic equation, resulting in a spatially-varying anisotropic conductivity tensor and consequently anisotropic propagation. Since the model comprises approximately 12 million points, parallel processing was used to cut down on simulation time. The model generated acceptably-normal electrocardiograms, vectorcardiograms and body surface potential maps on the surface of a numerical human torso model. Interestingly, it was found that the intrinsic difference in action potential duration between M cells and other myocardial cells was greatly diminished due to electrotonic coupling.</description><identifier>ISSN: 1094-687X</identifier><identifier>ISBN: 9780780372115</identifier><identifier>ISBN: 0780372115</identifier><identifier>EISSN: 1558-4615</identifier><identifier>DOI: 10.1109/IEMBS.2001.1018934</identifier><language>eng</language><publisher>IEEE</publisher><subject>Anisotropic magnetoresistance ; Biological system modeling ; Biomembranes ; Computational modeling ; Computer simulation ; Concurrent computing ; Equations ; Heart ; Humans ; Parallel processing</subject><ispartof>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.1, p.359-362 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1018934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1018934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Trudel, M.-C.</creatorcontrib><creatorcontrib>Gulrajani, R.M.</creatorcontrib><creatorcontrib>Leon, L.J.</creatorcontrib><title>Simulation of propagation in a realistic-geometry computer heart model with parallel processing</title><title>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</title><addtitle>IEMBS</addtitle><description>The simulation of the propagation of electrical activity in a realistic-geometry computer model of the ventricles of the human heart using the governing reaction-diffusion equation is described. Each model point is represented by the phase 1 Luo-Rudy membrane model, appropriately modified to represent human action potentials. A separate longer-duration action potential waveform was used for the M cells found in the ventricular mid-wall. Cardiac fiber rotation across the ventricular wall was implemented via an analytic equation, resulting in a spatially-varying anisotropic conductivity tensor and consequently anisotropic propagation. Since the model comprises approximately 12 million points, parallel processing was used to cut down on simulation time. The model generated acceptably-normal electrocardiograms, vectorcardiograms and body surface potential maps on the surface of a numerical human torso model. Interestingly, it was found that the intrinsic difference in action potential duration between M cells and other myocardial cells was greatly diminished due to electrotonic coupling.</description><subject>Anisotropic magnetoresistance</subject><subject>Biological system modeling</subject><subject>Biomembranes</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Concurrent computing</subject><subject>Equations</subject><subject>Heart</subject><subject>Humans</subject><subject>Parallel processing</subject><issn>1094-687X</issn><issn>1558-4615</issn><isbn>9780780372115</isbn><isbn>0780372115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNp9j8FqwzAQREWaQkPjH2gu-wN2tZYdW9eWhPbQU3rozQh346hIlpAUSv6-guacYWB4DAwMY0_IK0Qun993Hy-HquYcK-TYS9Es2Arbti-bLbZ3rJBdz7NFVyO2y9xx2ZTbvvt6YEWMPzxLyEbIesWGg7Zno5J2M7gj-OC8mv5Rz6AgkDI6Jj2WEzlLKVxgdNafEwU4kQoJrPsmA786ncCroIzJlGdGilHP05rdH5WJVFzzkW32u8_Xt1IT0eCDtipchusNcbv9AyqzSgw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Trudel, M.-C.</creator><creator>Gulrajani, R.M.</creator><creator>Leon, L.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>Simulation of propagation in a realistic-geometry computer heart model with parallel processing</title><author>Trudel, M.-C. ; Gulrajani, R.M. ; Leon, L.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_10189343</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Biological system modeling</topic><topic>Biomembranes</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Concurrent computing</topic><topic>Equations</topic><topic>Heart</topic><topic>Humans</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Trudel, M.-C.</creatorcontrib><creatorcontrib>Gulrajani, R.M.</creatorcontrib><creatorcontrib>Leon, L.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Trudel, M.-C.</au><au>Gulrajani, R.M.</au><au>Leon, L.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simulation of propagation in a realistic-geometry computer heart model with parallel processing</atitle><btitle>2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society</btitle><stitle>IEMBS</stitle><date>2001</date><risdate>2001</risdate><volume>1</volume><spage>359</spage><epage>362 vol.1</epage><pages>359-362 vol.1</pages><issn>1094-687X</issn><eissn>1558-4615</eissn><isbn>9780780372115</isbn><isbn>0780372115</isbn><abstract>The simulation of the propagation of electrical activity in a realistic-geometry computer model of the ventricles of the human heart using the governing reaction-diffusion equation is described. Each model point is represented by the phase 1 Luo-Rudy membrane model, appropriately modified to represent human action potentials. A separate longer-duration action potential waveform was used for the M cells found in the ventricular mid-wall. Cardiac fiber rotation across the ventricular wall was implemented via an analytic equation, resulting in a spatially-varying anisotropic conductivity tensor and consequently anisotropic propagation. Since the model comprises approximately 12 million points, parallel processing was used to cut down on simulation time. The model generated acceptably-normal electrocardiograms, vectorcardiograms and body surface potential maps on the surface of a numerical human torso model. Interestingly, it was found that the intrinsic difference in action potential duration between M cells and other myocardial cells was greatly diminished due to electrotonic coupling.</abstract><pub>IEEE</pub><doi>10.1109/IEMBS.2001.1018934</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1094-687X
ispartof 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001, Vol.1, p.359-362 vol.1
issn 1094-687X
1558-4615
language eng
recordid cdi_ieee_primary_1018934
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Anisotropic magnetoresistance
Biological system modeling
Biomembranes
Computational modeling
Computer simulation
Concurrent computing
Equations
Heart
Humans
Parallel processing
title Simulation of propagation in a realistic-geometry computer heart model with parallel processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simulation%20of%20propagation%20in%20a%20realistic-geometry%20computer%20heart%20model%20with%20parallel%20processing&rft.btitle=2001%20Conference%20Proceedings%20of%20the%2023rd%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society&rft.au=Trudel,%20M.-C.&rft.date=2001&rft.volume=1&rft.spage=359&rft.epage=362%20vol.1&rft.pages=359-362%20vol.1&rft.issn=1094-687X&rft.eissn=1558-4615&rft.isbn=9780780372115&rft.isbn_list=0780372115&rft_id=info:doi/10.1109/IEMBS.2001.1018934&rft_dat=%3Cieee_6IE%3E1018934%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-ieee_primary_10189343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1018934&rfr_iscdi=true