Loading…
Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor
The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar i...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Jing, Zhenhua Hu, Xiuqing Li, Shuang Pan, Hongbo |
description | The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains. |
doi_str_mv | 10.1109/TGRS.2023.3297401 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10189377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10189377</ieee_id><sourcerecordid>2845756273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1mXwfRbRVVgq2nsPuNmtT1k1NdhX_vduPg6eBd553Bh6ErimZUErM3XL6tpgAATZhYBQn9ASNqBAaE8n5KRoRaiQGbeAcXaS0IYRyQdUIvU5daEJVdD60WaizvG-LmM3L5OL3PkzZj-_W2YvPfYtpNvMfaxxdCk2_r8y3na-KJlu4NoV4ic7qoknu6jjH6P3pcfkww_l8-vxwn-MKDO-wLBXXBKiBUsuiFIVwoCsJUjlSAzBdrzRIrYGrmgyLijlDBWWwEnLFJbAxuj3c3cbw1bvU2U3oYzu8tKC5UEKCYgNFD1QVQ0rR1XYb_WcRfy0ldmfN7qzZnTV7tDZ0bg4d75z7x1NtmFLsDy3bZyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845756273</pqid></control><display><type>article</type><title>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</title><source>IEEE Xplore (Online service)</source><creator>Jing, Zhenhua ; Hu, Xiuqing ; Li, Shuang ; Pan, Hongbo</creator><creatorcontrib>Jing, Zhenhua ; Hu, Xiuqing ; Li, Shuang ; Pan, Hongbo</creatorcontrib><description>The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3297401</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Calibration ; Cameras ; Charge coupled devices ; Earth orbit ; Earth orbits ; Geographical locations ; Geolocation ; High resolution ; Image quality ; Instruments ; Irradiance ; JL1GP02 ; Libration ; low Earth orbit (LEO) satellite ; Low earth orbits ; lunar observations ; Lunar phases ; Moon ; Moon phases ; Non-Lambertian surfaces ; Optical measuring instruments ; Optical properties ; Planetary orbits ; Radiance ; remote sensing ; Satellite broadcasting ; Satellites ; Selenography ; Sensors ; Spacecraft</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</citedby><cites>FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</cites><orcidid>0000-0002-8331-2266 ; 0000-0001-9142-5036 ; 0000-0003-1421-6534 ; 0000-0002-3020-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10189377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jing, Zhenhua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Pan, Hongbo</creatorcontrib><title>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Charge coupled devices</subject><subject>Earth orbit</subject><subject>Earth orbits</subject><subject>Geographical locations</subject><subject>Geolocation</subject><subject>High resolution</subject><subject>Image quality</subject><subject>Instruments</subject><subject>Irradiance</subject><subject>JL1GP02</subject><subject>Libration</subject><subject>low Earth orbit (LEO) satellite</subject><subject>Low earth orbits</subject><subject>lunar observations</subject><subject>Lunar phases</subject><subject>Moon</subject><subject>Moon phases</subject><subject>Non-Lambertian surfaces</subject><subject>Optical measuring instruments</subject><subject>Optical properties</subject><subject>Planetary orbits</subject><subject>Radiance</subject><subject>remote sensing</subject><subject>Satellite broadcasting</subject><subject>Satellites</subject><subject>Selenography</subject><subject>Sensors</subject><subject>Spacecraft</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1mXwfRbRVVgq2nsPuNmtT1k1NdhX_vduPg6eBd553Bh6ErimZUErM3XL6tpgAATZhYBQn9ASNqBAaE8n5KRoRaiQGbeAcXaS0IYRyQdUIvU5daEJVdD60WaizvG-LmM3L5OL3PkzZj-_W2YvPfYtpNvMfaxxdCk2_r8y3na-KJlu4NoV4ic7qoknu6jjH6P3pcfkww_l8-vxwn-MKDO-wLBXXBKiBUsuiFIVwoCsJUjlSAzBdrzRIrYGrmgyLijlDBWWwEnLFJbAxuj3c3cbw1bvU2U3oYzu8tKC5UEKCYgNFD1QVQ0rR1XYb_WcRfy0ldmfN7qzZnTV7tDZ0bg4d75z7x1NtmFLsDy3bZyU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jing, Zhenhua</creator><creator>Hu, Xiuqing</creator><creator>Li, Shuang</creator><creator>Pan, Hongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0001-9142-5036</orcidid><orcidid>https://orcid.org/0000-0003-1421-6534</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid></search><sort><creationdate>20230101</creationdate><title>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</title><author>Jing, Zhenhua ; Hu, Xiuqing ; Li, Shuang ; Pan, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Charge coupled devices</topic><topic>Earth orbit</topic><topic>Earth orbits</topic><topic>Geographical locations</topic><topic>Geolocation</topic><topic>High resolution</topic><topic>Image quality</topic><topic>Instruments</topic><topic>Irradiance</topic><topic>JL1GP02</topic><topic>Libration</topic><topic>low Earth orbit (LEO) satellite</topic><topic>Low earth orbits</topic><topic>lunar observations</topic><topic>Lunar phases</topic><topic>Moon</topic><topic>Moon phases</topic><topic>Non-Lambertian surfaces</topic><topic>Optical measuring instruments</topic><topic>Optical properties</topic><topic>Planetary orbits</topic><topic>Radiance</topic><topic>remote sensing</topic><topic>Satellite broadcasting</topic><topic>Satellites</topic><topic>Selenography</topic><topic>Sensors</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Zhenhua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Pan, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Zhenhua</au><au>Hu, Xiuqing</au><au>Li, Shuang</au><au>Pan, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3297401</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0001-9142-5036</orcidid><orcidid>https://orcid.org/0000-0003-1421-6534</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10189377 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Calibration Cameras Charge coupled devices Earth orbit Earth orbits Geographical locations Geolocation High resolution Image quality Instruments Irradiance JL1GP02 Libration low Earth orbit (LEO) satellite Low earth orbits lunar observations Lunar phases Moon Moon phases Non-Lambertian surfaces Optical measuring instruments Optical properties Planetary orbits Radiance remote sensing Satellite broadcasting Satellites Selenography Sensors Spacecraft |
title | Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geolocation%20of%20Lunar%20Observations%20with%20JiLin-1%20High-resolution%20Optical%20Sensor&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jing,%20Zhenhua&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3297401&rft_dat=%3Cproquest_ieee_%3E2845756273%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845756273&rft_id=info:pmid/&rft_ieee_id=10189377&rfr_iscdi=true |