Loading…

Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor

The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Main Authors: Jing, Zhenhua, Hu, Xiuqing, Li, Shuang, Pan, Hongbo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623
cites cdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Jing, Zhenhua
Hu, Xiuqing
Li, Shuang
Pan, Hongbo
description The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.
doi_str_mv 10.1109/TGRS.2023.3297401
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10189377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10189377</ieee_id><sourcerecordid>2845756273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1mXwfRbRVVgq2nsPuNmtT1k1NdhX_vduPg6eBd553Bh6ErimZUErM3XL6tpgAATZhYBQn9ASNqBAaE8n5KRoRaiQGbeAcXaS0IYRyQdUIvU5daEJVdD60WaizvG-LmM3L5OL3PkzZj-_W2YvPfYtpNvMfaxxdCk2_r8y3na-KJlu4NoV4ic7qoknu6jjH6P3pcfkww_l8-vxwn-MKDO-wLBXXBKiBUsuiFIVwoCsJUjlSAzBdrzRIrYGrmgyLijlDBWWwEnLFJbAxuj3c3cbw1bvU2U3oYzu8tKC5UEKCYgNFD1QVQ0rR1XYb_WcRfy0ldmfN7qzZnTV7tDZ0bg4d75z7x1NtmFLsDy3bZyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845756273</pqid></control><display><type>article</type><title>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</title><source>IEEE Xplore (Online service)</source><creator>Jing, Zhenhua ; Hu, Xiuqing ; Li, Shuang ; Pan, Hongbo</creator><creatorcontrib>Jing, Zhenhua ; Hu, Xiuqing ; Li, Shuang ; Pan, Hongbo</creatorcontrib><description>The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3297401</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Calibration ; Cameras ; Charge coupled devices ; Earth orbit ; Earth orbits ; Geographical locations ; Geolocation ; High resolution ; Image quality ; Instruments ; Irradiance ; JL1GP02 ; Libration ; low Earth orbit (LEO) satellite ; Low earth orbits ; lunar observations ; Lunar phases ; Moon ; Moon phases ; Non-Lambertian surfaces ; Optical measuring instruments ; Optical properties ; Planetary orbits ; Radiance ; remote sensing ; Satellite broadcasting ; Satellites ; Selenography ; Sensors ; Spacecraft</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</citedby><cites>FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</cites><orcidid>0000-0002-8331-2266 ; 0000-0001-9142-5036 ; 0000-0003-1421-6534 ; 0000-0002-3020-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10189377$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jing, Zhenhua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Pan, Hongbo</creatorcontrib><title>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Charge coupled devices</subject><subject>Earth orbit</subject><subject>Earth orbits</subject><subject>Geographical locations</subject><subject>Geolocation</subject><subject>High resolution</subject><subject>Image quality</subject><subject>Instruments</subject><subject>Irradiance</subject><subject>JL1GP02</subject><subject>Libration</subject><subject>low Earth orbit (LEO) satellite</subject><subject>Low earth orbits</subject><subject>lunar observations</subject><subject>Lunar phases</subject><subject>Moon</subject><subject>Moon phases</subject><subject>Non-Lambertian surfaces</subject><subject>Optical measuring instruments</subject><subject>Optical properties</subject><subject>Planetary orbits</subject><subject>Radiance</subject><subject>remote sensing</subject><subject>Satellite broadcasting</subject><subject>Satellites</subject><subject>Selenography</subject><subject>Sensors</subject><subject>Spacecraft</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPCw4Dk1mXwfRbRVVgq2nsPuNmtT1k1NdhX_vduPg6eBd553Bh6ErimZUErM3XL6tpgAATZhYBQn9ASNqBAaE8n5KRoRaiQGbeAcXaS0IYRyQdUIvU5daEJVdD60WaizvG-LmM3L5OL3PkzZj-_W2YvPfYtpNvMfaxxdCk2_r8y3na-KJlu4NoV4ic7qoknu6jjH6P3pcfkww_l8-vxwn-MKDO-wLBXXBKiBUsuiFIVwoCsJUjlSAzBdrzRIrYGrmgyLijlDBWWwEnLFJbAxuj3c3cbw1bvU2U3oYzu8tKC5UEKCYgNFD1QVQ0rR1XYb_WcRfy0ldmfN7qzZnTV7tDZ0bg4d75z7x1NtmFLsDy3bZyU</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Jing, Zhenhua</creator><creator>Hu, Xiuqing</creator><creator>Li, Shuang</creator><creator>Pan, Hongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0001-9142-5036</orcidid><orcidid>https://orcid.org/0000-0003-1421-6534</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid></search><sort><creationdate>20230101</creationdate><title>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</title><author>Jing, Zhenhua ; Hu, Xiuqing ; Li, Shuang ; Pan, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Charge coupled devices</topic><topic>Earth orbit</topic><topic>Earth orbits</topic><topic>Geographical locations</topic><topic>Geolocation</topic><topic>High resolution</topic><topic>Image quality</topic><topic>Instruments</topic><topic>Irradiance</topic><topic>JL1GP02</topic><topic>Libration</topic><topic>low Earth orbit (LEO) satellite</topic><topic>Low earth orbits</topic><topic>lunar observations</topic><topic>Lunar phases</topic><topic>Moon</topic><topic>Moon phases</topic><topic>Non-Lambertian surfaces</topic><topic>Optical measuring instruments</topic><topic>Optical properties</topic><topic>Planetary orbits</topic><topic>Radiance</topic><topic>remote sensing</topic><topic>Satellite broadcasting</topic><topic>Satellites</topic><topic>Selenography</topic><topic>Sensors</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jing, Zhenhua</creatorcontrib><creatorcontrib>Hu, Xiuqing</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Pan, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jing, Zhenhua</au><au>Hu, Xiuqing</au><au>Li, Shuang</au><au>Pan, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The radiometric properties of the lunar nearside have been used as a function of the observation geometry to generate disk-equivalent irradiance and as a reference for satellite measurements. However, lunar libration and non-Lambertian surface are among the factors that limit the accuracy of lunar irradiance models. Radiance knowledge of specific parts of the Moon also provides calibration standards. The regions can be identified in high-resolution lunar views from Moon orbiters and Earth-orbiting spacecraft, and very little work has been done to place the two-dimensional images from the latter under a designated frame. The lunar phase modifies grayscale or texture information, and image-matching algorithms are limited. The panchromatic and multispectral sensor (PMS) on the JiLin-1 GuangPu-02 (JL1GP02) operating in low Earth orbit can obtain spatially resolved images of the Moon by continuous sampling relying on maneuvers. In this work, we propose a geometric sensor model for PMS, construct geographic (or rather selenographic) positions in grid format, and then combine it with global lunar reference map to create simulated images, which are used to identify tie points with Wide Angle Camera (WAC) orthophoto map with similar geometry structure to characterize geometric errors. We also assume imaging as area charge-coupled device (CCD) for simplification and introduce two methods of instrument pointing correction based on image space residuals. The quality of the results is finally discussed. The results can be exploited to determine the geographic location of the observed targets and subdivision regions and to facilitate studies of the photometric properties of the targets in selected domains.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3297401</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8331-2266</orcidid><orcidid>https://orcid.org/0000-0001-9142-5036</orcidid><orcidid>https://orcid.org/0000-0003-1421-6534</orcidid><orcidid>https://orcid.org/0000-0002-3020-8676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10189377
source IEEE Xplore (Online service)
subjects Algorithms
Calibration
Cameras
Charge coupled devices
Earth orbit
Earth orbits
Geographical locations
Geolocation
High resolution
Image quality
Instruments
Irradiance
JL1GP02
Libration
low Earth orbit (LEO) satellite
Low earth orbits
lunar observations
Lunar phases
Moon
Moon phases
Non-Lambertian surfaces
Optical measuring instruments
Optical properties
Planetary orbits
Radiance
remote sensing
Satellite broadcasting
Satellites
Selenography
Sensors
Spacecraft
title Geolocation of Lunar Observations with JiLin-1 High-resolution Optical Sensor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geolocation%20of%20Lunar%20Observations%20with%20JiLin-1%20High-resolution%20Optical%20Sensor&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jing,%20Zhenhua&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3297401&rft_dat=%3Cproquest_ieee_%3E2845756273%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-6b74802192b86ab5a5e28c6267e0f2238fd82688247f08c6c3e915132d56d4623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2845756273&rft_id=info:pmid/&rft_ieee_id=10189377&rfr_iscdi=true