Loading…
Efficient interval methods for finite element solutions
An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval v...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 168 |
container_issue | |
container_start_page | 161 |
container_title | |
container_volume | |
creator | Mullen, R.L. Muhanna, R.L. |
description | An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented. |
doi_str_mv | 10.1109/HPCSA.2002.1019150 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1019150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1019150</ieee_id><sourcerecordid>1019150</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18ac219e053595d427ed4550304429391dd5f431f41e796aefd787358ffba3963</originalsourceid><addsrcrecordid>eNotj81KAzEURgMiKHVeQDfzAjPem-Qmk2UZqhUKFdR1ic0NRuZHJlHw7VXstzmbw4FPiGuEFhHc7faxf1q3EkC2COiQ4ExUznZgjSM00ugLUeX8Dr_TpDsjL4XdxJiOiadSp6nw8uWHeuTyNodcx3mpY5pS4ZoHHv-cPA-fJc1TvhLn0Q-ZqxNX4uVu89xvm93-_qFf75qElkqDnT9KdAykyFHQ0nLQRKBAa-mUwxAoaoVRI1tnPMdgO6uoi_HVK2fUStz8dxMzHz6WNPrl-3C6p34A2QlEyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient interval methods for finite element solutions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mullen, R.L. ; Muhanna, R.L.</creator><creatorcontrib>Mullen, R.L. ; Muhanna, R.L.</creatorcontrib><description>An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.</description><identifier>ISBN: 9780769516264</identifier><identifier>ISBN: 0769516262</identifier><identifier>DOI: 10.1109/HPCSA.2002.1019150</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arithmetic ; Data analysis ; Finite element methods ; Finite wordlength effects ; High performance computing ; Lagrangian functions ; Large-scale systems ; Physics computing ; Solids ; Uncertainty</subject><ispartof>Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications, 2002, p.161-168</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1019150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1019150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mullen, R.L.</creatorcontrib><creatorcontrib>Muhanna, R.L.</creatorcontrib><title>Efficient interval methods for finite element solutions</title><title>Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications</title><addtitle>HPCSA</addtitle><description>An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.</description><subject>Arithmetic</subject><subject>Data analysis</subject><subject>Finite element methods</subject><subject>Finite wordlength effects</subject><subject>High performance computing</subject><subject>Lagrangian functions</subject><subject>Large-scale systems</subject><subject>Physics computing</subject><subject>Solids</subject><subject>Uncertainty</subject><isbn>9780769516264</isbn><isbn>0769516262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURgMiKHVeQDfzAjPem-Qmk2UZqhUKFdR1ic0NRuZHJlHw7VXstzmbw4FPiGuEFhHc7faxf1q3EkC2COiQ4ExUznZgjSM00ugLUeX8Dr_TpDsjL4XdxJiOiadSp6nw8uWHeuTyNodcx3mpY5pS4ZoHHv-cPA-fJc1TvhLn0Q-ZqxNX4uVu89xvm93-_qFf75qElkqDnT9KdAykyFHQ0nLQRKBAa-mUwxAoaoVRI1tnPMdgO6uoi_HVK2fUStz8dxMzHz6WNPrl-3C6p34A2QlEyw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Mullen, R.L.</creator><creator>Muhanna, R.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Efficient interval methods for finite element solutions</title><author>Mullen, R.L. ; Muhanna, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18ac219e053595d427ed4550304429391dd5f431f41e796aefd787358ffba3963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Arithmetic</topic><topic>Data analysis</topic><topic>Finite element methods</topic><topic>Finite wordlength effects</topic><topic>High performance computing</topic><topic>Lagrangian functions</topic><topic>Large-scale systems</topic><topic>Physics computing</topic><topic>Solids</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Mullen, R.L.</creatorcontrib><creatorcontrib>Muhanna, R.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mullen, R.L.</au><au>Muhanna, R.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient interval methods for finite element solutions</atitle><btitle>Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications</btitle><stitle>HPCSA</stitle><date>2002</date><risdate>2002</risdate><spage>161</spage><epage>168</epage><pages>161-168</pages><isbn>9780769516264</isbn><isbn>0769516262</isbn><abstract>An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.</abstract><pub>IEEE</pub><doi>10.1109/HPCSA.2002.1019150</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780769516264 |
ispartof | Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications, 2002, p.161-168 |
issn | |
language | eng |
recordid | cdi_ieee_primary_1019150 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arithmetic Data analysis Finite element methods Finite wordlength effects High performance computing Lagrangian functions Large-scale systems Physics computing Solids Uncertainty |
title | Efficient interval methods for finite element solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20interval%20methods%20for%20finite%20element%20solutions&rft.btitle=Proceedings%2016th%20Annual%20International%20Symposium%20on%20High%20Performance%20Computing%20Systems%20and%20Applications&rft.au=Mullen,%20R.L.&rft.date=2002&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.isbn=9780769516264&rft.isbn_list=0769516262&rft_id=info:doi/10.1109/HPCSA.2002.1019150&rft_dat=%3Cieee_6IE%3E1019150%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-18ac219e053595d427ed4550304429391dd5f431f41e796aefd787358ffba3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1019150&rfr_iscdi=true |