Loading…

Efficient interval methods for finite element solutions

An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval v...

Full description

Saved in:
Bibliographic Details
Main Authors: Mullen, R.L., Muhanna, R.L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 168
container_issue
container_start_page 161
container_title
container_volume
creator Mullen, R.L.
Muhanna, R.L.
description An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.
doi_str_mv 10.1109/HPCSA.2002.1019150
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_1019150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1019150</ieee_id><sourcerecordid>1019150</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-18ac219e053595d427ed4550304429391dd5f431f41e796aefd787358ffba3963</originalsourceid><addsrcrecordid>eNotj81KAzEURgMiKHVeQDfzAjPem-Qmk2UZqhUKFdR1ic0NRuZHJlHw7VXstzmbw4FPiGuEFhHc7faxf1q3EkC2COiQ4ExUznZgjSM00ugLUeX8Dr_TpDsjL4XdxJiOiadSp6nw8uWHeuTyNodcx3mpY5pS4ZoHHv-cPA-fJc1TvhLn0Q-ZqxNX4uVu89xvm93-_qFf75qElkqDnT9KdAykyFHQ0nLQRKBAa-mUwxAoaoVRI1tnPMdgO6uoi_HVK2fUStz8dxMzHz6WNPrl-3C6p34A2QlEyw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient interval methods for finite element solutions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mullen, R.L. ; Muhanna, R.L.</creator><creatorcontrib>Mullen, R.L. ; Muhanna, R.L.</creatorcontrib><description>An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.</description><identifier>ISBN: 9780769516264</identifier><identifier>ISBN: 0769516262</identifier><identifier>DOI: 10.1109/HPCSA.2002.1019150</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arithmetic ; Data analysis ; Finite element methods ; Finite wordlength effects ; High performance computing ; Lagrangian functions ; Large-scale systems ; Physics computing ; Solids ; Uncertainty</subject><ispartof>Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications, 2002, p.161-168</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1019150$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1019150$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mullen, R.L.</creatorcontrib><creatorcontrib>Muhanna, R.L.</creatorcontrib><title>Efficient interval methods for finite element solutions</title><title>Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications</title><addtitle>HPCSA</addtitle><description>An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.</description><subject>Arithmetic</subject><subject>Data analysis</subject><subject>Finite element methods</subject><subject>Finite wordlength effects</subject><subject>High performance computing</subject><subject>Lagrangian functions</subject><subject>Large-scale systems</subject><subject>Physics computing</subject><subject>Solids</subject><subject>Uncertainty</subject><isbn>9780769516264</isbn><isbn>0769516262</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2002</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81KAzEURgMiKHVeQDfzAjPem-Qmk2UZqhUKFdR1ic0NRuZHJlHw7VXstzmbw4FPiGuEFhHc7faxf1q3EkC2COiQ4ExUznZgjSM00ugLUeX8Dr_TpDsjL4XdxJiOiadSp6nw8uWHeuTyNodcx3mpY5pS4ZoHHv-cPA-fJc1TvhLn0Q-ZqxNX4uVu89xvm93-_qFf75qElkqDnT9KdAykyFHQ0nLQRKBAa-mUwxAoaoVRI1tnPMdgO6uoi_HVK2fUStz8dxMzHz6WNPrl-3C6p34A2QlEyw</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Mullen, R.L.</creator><creator>Muhanna, R.L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2002</creationdate><title>Efficient interval methods for finite element solutions</title><author>Mullen, R.L. ; Muhanna, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-18ac219e053595d427ed4550304429391dd5f431f41e796aefd787358ffba3963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Arithmetic</topic><topic>Data analysis</topic><topic>Finite element methods</topic><topic>Finite wordlength effects</topic><topic>High performance computing</topic><topic>Lagrangian functions</topic><topic>Large-scale systems</topic><topic>Physics computing</topic><topic>Solids</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Mullen, R.L.</creatorcontrib><creatorcontrib>Muhanna, R.L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mullen, R.L.</au><au>Muhanna, R.L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient interval methods for finite element solutions</atitle><btitle>Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications</btitle><stitle>HPCSA</stitle><date>2002</date><risdate>2002</risdate><spage>161</spage><epage>168</epage><pages>161-168</pages><isbn>9780769516264</isbn><isbn>0769516262</isbn><abstract>An efficient method for including the impact of uncertain input data along with the impact of truncation errors in finite element calculations is presented. This method is based on the theory of interval numbers. The formulation involves a predictor-corrector approach that allows for wide interval values as input and maintains sharp results during calculations. Results that illustrate the method's improved sharpness for solid mechanics problems are presented.</abstract><pub>IEEE</pub><doi>10.1109/HPCSA.2002.1019150</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780769516264
ispartof Proceedings 16th Annual International Symposium on High Performance Computing Systems and Applications, 2002, p.161-168
issn
language eng
recordid cdi_ieee_primary_1019150
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arithmetic
Data analysis
Finite element methods
Finite wordlength effects
High performance computing
Lagrangian functions
Large-scale systems
Physics computing
Solids
Uncertainty
title Efficient interval methods for finite element solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20interval%20methods%20for%20finite%20element%20solutions&rft.btitle=Proceedings%2016th%20Annual%20International%20Symposium%20on%20High%20Performance%20Computing%20Systems%20and%20Applications&rft.au=Mullen,%20R.L.&rft.date=2002&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.isbn=9780769516264&rft.isbn_list=0769516262&rft_id=info:doi/10.1109/HPCSA.2002.1019150&rft_dat=%3Cieee_6IE%3E1019150%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-18ac219e053595d427ed4550304429391dd5f431f41e796aefd787358ffba3963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1019150&rfr_iscdi=true