Loading…
Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics
In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy i...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2024-06, Vol.71 (6), p.1-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy influences the final performance, a novel analytic solution of inverse kinematics is proposed in this article with complete singularity analysis. Using CTC to construct a nominal controller, a quadratic program (QP) is formed by combining it with designed HOCBF constraints. Solving the QP, trajectory tracking can be achieved under particular safety constraints. The proposed approach has been validated on the UR3 robot in simulation and experiment, taking an obstacle avoidance task as safety constraints. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2023.3296810 |