Loading…

Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics

In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2024-06, Vol.71 (6), p.1-11
Main Authors: Lin, Juncheng, Zhai, Di-Hua, Xiong, Yuhan, Xia, Yuanqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-8a2c9b1cb0ed66cfa724b830f0965bb83a6b6acd732510c2faa0201b783d19773
container_end_page 11
container_issue 6
container_start_page 1
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator Lin, Juncheng
Zhai, Di-Hua
Xiong, Yuhan
Xia, Yuanqing
description In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy influences the final performance, a novel analytic solution of inverse kinematics is proposed in this article with complete singularity analysis. Using CTC to construct a nominal controller, a quadratic program (QP) is formed by combining it with designed HOCBF constraints. Solving the QP, trajectory tracking can be achieved under particular safety constraints. The proposed approach has been validated on the UR3 robot in simulation and experiment, taking an obstacle avoidance task as safety constraints.
doi_str_mv 10.1109/TIE.2023.3296810
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10195932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10195932</ieee_id><sourcerecordid>2920286467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-8a2c9b1cb0ed66cfa724b830f0965bb83a6b6acd732510c2faa0201b783d19773</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOKd3Dx4Cnju_Sdu0Oc7h3HAymNu5fJummtE1M2kH9a-3Y0M8fX_w3uPxIeSewYgxkE_r-cuIAw9HIZciZXBBBiyOk0DKKL0kA-BJGgBE4prceL8FYFHM4gH5-cBSNx2d2LpxtqKldXSzCtbdXtOVzW1jFH3H2uzbChvrPD0YpDPz-RUsXaHdn-8ZnTP9PW1r1Rhbe4p1Qcc1Vl0fgRWd1wftvKZvptY77H_-llyVWHl9d55Dspm-rCezYLF8nU_Gi0DxKG6CFLmSOVM56EIIVWLCozwNoQQp4rzfUOQCVZGEPGageIkIHFiepGHBZJKEQ_J4yt07-91q32Rb27q-mc-47JGlIhJHFZxUylnvnS6zvTM7dF3GIDsSznrC2ZFwdibcWx5OFqO1_idnMpYhD38BPkJ4Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920286467</pqid></control><display><type>article</type><title>Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics</title><source>IEEE Xplore (Online service)</source><creator>Lin, Juncheng ; Zhai, Di-Hua ; Xiong, Yuhan ; Xia, Yuanqing</creator><creatorcontrib>Lin, Juncheng ; Zhai, Di-Hua ; Xiong, Yuhan ; Xia, Yuanqing</creatorcontrib><description>In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy influences the final performance, a novel analytic solution of inverse kinematics is proposed in this article with complete singularity analysis. Using CTC to construct a nominal controller, a quadratic program (QP) is formed by combining it with designed HOCBF constraints. Solving the QP, trajectory tracking can be achieved under particular safety constraints. The proposed approach has been validated on the UR3 robot in simulation and experiment, taking an obstacle avoidance task as safety constraints.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3296810</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Collision avoidance ; Computed torque control (CTC) ; control barrier functions (CBFs) ; Exact solutions ; Inverse kinematics ; Kinematics ; Manipulators ; Obstacle avoidance ; Optimization ; Quadratic programming ; Robot arms ; Robot control ; Robotics ; Robots ; Safety ; safety control ; Service robots ; Torque control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-06, Vol.71 (6), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-8a2c9b1cb0ed66cfa724b830f0965bb83a6b6acd732510c2faa0201b783d19773</cites><orcidid>0000-0001-8653-8626 ; 0000-0002-5977-4911 ; 0009-0004-4574-8781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10195932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lin, Juncheng</creatorcontrib><creatorcontrib>Zhai, Di-Hua</creatorcontrib><creatorcontrib>Xiong, Yuhan</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><title>Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy influences the final performance, a novel analytic solution of inverse kinematics is proposed in this article with complete singularity analysis. Using CTC to construct a nominal controller, a quadratic program (QP) is formed by combining it with designed HOCBF constraints. Solving the QP, trajectory tracking can be achieved under particular safety constraints. The proposed approach has been validated on the UR3 robot in simulation and experiment, taking an obstacle avoidance task as safety constraints.</description><subject>Collision avoidance</subject><subject>Computed torque control (CTC)</subject><subject>control barrier functions (CBFs)</subject><subject>Exact solutions</subject><subject>Inverse kinematics</subject><subject>Kinematics</subject><subject>Manipulators</subject><subject>Obstacle avoidance</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Safety</subject><subject>safety control</subject><subject>Service robots</subject><subject>Torque control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOKd3Dx4Cnju_Sdu0Oc7h3HAymNu5fJummtE1M2kH9a-3Y0M8fX_w3uPxIeSewYgxkE_r-cuIAw9HIZciZXBBBiyOk0DKKL0kA-BJGgBE4prceL8FYFHM4gH5-cBSNx2d2LpxtqKldXSzCtbdXtOVzW1jFH3H2uzbChvrPD0YpDPz-RUsXaHdn-8ZnTP9PW1r1Rhbe4p1Qcc1Vl0fgRWd1wftvKZvptY77H_-llyVWHl9d55Dspm-rCezYLF8nU_Gi0DxKG6CFLmSOVM56EIIVWLCozwNoQQp4rzfUOQCVZGEPGageIkIHFiepGHBZJKEQ_J4yt07-91q32Rb27q-mc-47JGlIhJHFZxUylnvnS6zvTM7dF3GIDsSznrC2ZFwdibcWx5OFqO1_idnMpYhD38BPkJ4Yg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Lin, Juncheng</creator><creator>Zhai, Di-Hua</creator><creator>Xiong, Yuhan</creator><creator>Xia, Yuanqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8653-8626</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0009-0004-4574-8781</orcidid></search><sort><creationdate>20240601</creationdate><title>Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics</title><author>Lin, Juncheng ; Zhai, Di-Hua ; Xiong, Yuhan ; Xia, Yuanqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-8a2c9b1cb0ed66cfa724b830f0965bb83a6b6acd732510c2faa0201b783d19773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collision avoidance</topic><topic>Computed torque control (CTC)</topic><topic>control barrier functions (CBFs)</topic><topic>Exact solutions</topic><topic>Inverse kinematics</topic><topic>Kinematics</topic><topic>Manipulators</topic><topic>Obstacle avoidance</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Safety</topic><topic>safety control</topic><topic>Service robots</topic><topic>Torque control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Juncheng</creatorcontrib><creatorcontrib>Zhai, Di-Hua</creatorcontrib><creatorcontrib>Xiong, Yuhan</creatorcontrib><creatorcontrib>Xia, Yuanqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Juncheng</au><au>Zhai, Di-Hua</au><au>Xiong, Yuhan</au><au>Xia, Yuanqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>71</volume><issue>6</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>In robotics field, safety is an extensively researched subject. This article proposes an approach, which is based on high-order control barrier functions (HOCBFs) and computed torque control (CTC), for UR-type manipulators to guarantee safety while minimizing input changes. Since modeling accuracy influences the final performance, a novel analytic solution of inverse kinematics is proposed in this article with complete singularity analysis. Using CTC to construct a nominal controller, a quadratic program (QP) is formed by combining it with designed HOCBF constraints. Solving the QP, trajectory tracking can be achieved under particular safety constraints. The proposed approach has been validated on the UR3 robot in simulation and experiment, taking an obstacle avoidance task as safety constraints.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3296810</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8653-8626</orcidid><orcidid>https://orcid.org/0000-0002-5977-4911</orcidid><orcidid>https://orcid.org/0009-0004-4574-8781</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-06, Vol.71 (6), p.1-11
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_10195932
source IEEE Xplore (Online service)
subjects Collision avoidance
Computed torque control (CTC)
control barrier functions (CBFs)
Exact solutions
Inverse kinematics
Kinematics
Manipulators
Obstacle avoidance
Optimization
Quadratic programming
Robot arms
Robot control
Robotics
Robots
Safety
safety control
Service robots
Torque control
title Safety Control for UR-Type Robotic Manipulators via High-Order Control Barrier Functions and Analytical Inverse Kinematics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A03%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safety%20Control%20for%20UR-Type%20Robotic%20Manipulators%20via%20High-Order%20Control%20Barrier%20Functions%20and%20Analytical%20Inverse%20Kinematics&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Lin,%20Juncheng&rft.date=2024-06-01&rft.volume=71&rft.issue=6&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3296810&rft_dat=%3Cproquest_ieee_%3E2920286467%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-8a2c9b1cb0ed66cfa724b830f0965bb83a6b6acd732510c2faa0201b783d19773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920286467&rft_id=info:pmid/&rft_ieee_id=10195932&rfr_iscdi=true