Loading…

Large-Scale Parallelization of Human Migration Simulation

Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computational social systems 2024-04, Vol.11 (2), p.2135-2146
Main Authors: Groen, Derek, Papadopoulou, Nikela, Anastasiadis, Petros, Lawenda, Marcin, Szustak, Lukasz, Gogolenko, Sergiy, Arabnejad, Hamid, Jahani, Alireza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93
container_end_page 2146
container_issue 2
container_start_page 2135
container_title IEEE transactions on computational social systems
container_volume 11
creator Groen, Derek
Papadopoulou, Nikela
Anastasiadis, Petros
Lawenda, Marcin
Szustak, Lukasz
Gogolenko, Sergiy
Arabnejad, Hamid
Jahani, Alireza
description Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.
doi_str_mv 10.1109/TCSS.2023.3292932
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10207715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207715</ieee_id><sourcerecordid>3031399490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFQ_gOAh4Dl1_2Sz2aMUtUJFIRW8LZPdSZuSNHW3QfTTm5ginuYxvPeG-RFyxeiMMapvV_M8n3HKxUxwzbXgJ2TChRKxSlR6OmiuY82T93NyGcKWUsq4lIrTCdFL8GuMcws1Rq_goa6xrr7hULW7qC2jRdfALnqu1n5c5VXT1b_ygpyVUAe8PM4peXu4X80X8fLl8Wl-t4ytSOUh1pg6WUoEkTrLVSEZFMo6LRTnqHjhdKaosAXIjJZ9QkDhLFrHpE6kKLWYknzsDZ-47wqz91UD_su0UBmPAcHbjbEbqBv0wQQ0kABNHJXGZsBMr7TRHDJjnUwZSxMLWPatN2Pr3rcfHYaD2bad3_WPGEEFE1onmvYuNrqsb0PwWP5dZ9QM6M2A3gzozRF9n7keMxUi_vNzqhST4gfwAH-F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399490</pqid></control><display><type>article</type><title>Large-Scale Parallelization of Human Migration Simulation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Groen, Derek ; Papadopoulou, Nikela ; Anastasiadis, Petros ; Lawenda, Marcin ; Szustak, Lukasz ; Gogolenko, Sergiy ; Arabnejad, Hamid ; Jahani, Alireza</creator><creatorcontrib>Groen, Derek ; Papadopoulou, Nikela ; Anastasiadis, Petros ; Lawenda, Marcin ; Szustak, Lukasz ; Gogolenko, Sergiy ; Arabnejad, Hamid ; Jahani, Alireza</creatorcontrib><description>Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2023.3292932</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agent-based models ; Algorithms ; AMD Rome ; Behavioral sciences ; benchmarks ; Biological system modeling ; Codes ; computational complexity ; Displaced persons ; global challenges ; global systems science (GSS) ; Globalization ; high performance computing (HPC) ; Intel Xeon ; Migration ; modeling ; parallelization ; Predictive models ; refugees ; Simulation ; Sociology ; Statistics ; Urban areas</subject><ispartof>IEEE transactions on computational social systems, 2024-04, Vol.11 (2), p.2135-2146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93</cites><orcidid>0000-0001-7821-3610 ; 0000-0001-9813-352X ; 0000-0001-7463-3765 ; 0000-0001-7429-6981 ; 0000-0003-2141-5654 ; 0000-0003-4844-3655 ; 0000-0003-4957-5377 ; 0000-0002-0789-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/537000$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Groen, Derek</creatorcontrib><creatorcontrib>Papadopoulou, Nikela</creatorcontrib><creatorcontrib>Anastasiadis, Petros</creatorcontrib><creatorcontrib>Lawenda, Marcin</creatorcontrib><creatorcontrib>Szustak, Lukasz</creatorcontrib><creatorcontrib>Gogolenko, Sergiy</creatorcontrib><creatorcontrib>Arabnejad, Hamid</creatorcontrib><creatorcontrib>Jahani, Alireza</creatorcontrib><title>Large-Scale Parallelization of Human Migration Simulation</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.</description><subject>Agent-based models</subject><subject>Algorithms</subject><subject>AMD Rome</subject><subject>Behavioral sciences</subject><subject>benchmarks</subject><subject>Biological system modeling</subject><subject>Codes</subject><subject>computational complexity</subject><subject>Displaced persons</subject><subject>global challenges</subject><subject>global systems science (GSS)</subject><subject>Globalization</subject><subject>high performance computing (HPC)</subject><subject>Intel Xeon</subject><subject>Migration</subject><subject>modeling</subject><subject>parallelization</subject><subject>Predictive models</subject><subject>refugees</subject><subject>Simulation</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Urban areas</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFQ_gOAh4Dl1_2Sz2aMUtUJFIRW8LZPdSZuSNHW3QfTTm5ginuYxvPeG-RFyxeiMMapvV_M8n3HKxUxwzbXgJ2TChRKxSlR6OmiuY82T93NyGcKWUsq4lIrTCdFL8GuMcws1Rq_goa6xrr7hULW7qC2jRdfALnqu1n5c5VXT1b_ygpyVUAe8PM4peXu4X80X8fLl8Wl-t4ytSOUh1pg6WUoEkTrLVSEZFMo6LRTnqHjhdKaosAXIjJZ9QkDhLFrHpE6kKLWYknzsDZ-47wqz91UD_su0UBmPAcHbjbEbqBv0wQQ0kABNHJXGZsBMr7TRHDJjnUwZSxMLWPatN2Pr3rcfHYaD2bad3_WPGEEFE1onmvYuNrqsb0PwWP5dZ9QM6M2A3gzozRF9n7keMxUi_vNzqhST4gfwAH-F</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Groen, Derek</creator><creator>Papadopoulou, Nikela</creator><creator>Anastasiadis, Petros</creator><creator>Lawenda, Marcin</creator><creator>Szustak, Lukasz</creator><creator>Gogolenko, Sergiy</creator><creator>Arabnejad, Hamid</creator><creator>Jahani, Alireza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0001-7821-3610</orcidid><orcidid>https://orcid.org/0000-0001-9813-352X</orcidid><orcidid>https://orcid.org/0000-0001-7463-3765</orcidid><orcidid>https://orcid.org/0000-0001-7429-6981</orcidid><orcidid>https://orcid.org/0000-0003-2141-5654</orcidid><orcidid>https://orcid.org/0000-0003-4844-3655</orcidid><orcidid>https://orcid.org/0000-0003-4957-5377</orcidid><orcidid>https://orcid.org/0000-0002-0789-1825</orcidid></search><sort><creationdate>20240401</creationdate><title>Large-Scale Parallelization of Human Migration Simulation</title><author>Groen, Derek ; Papadopoulou, Nikela ; Anastasiadis, Petros ; Lawenda, Marcin ; Szustak, Lukasz ; Gogolenko, Sergiy ; Arabnejad, Hamid ; Jahani, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Algorithms</topic><topic>AMD Rome</topic><topic>Behavioral sciences</topic><topic>benchmarks</topic><topic>Biological system modeling</topic><topic>Codes</topic><topic>computational complexity</topic><topic>Displaced persons</topic><topic>global challenges</topic><topic>global systems science (GSS)</topic><topic>Globalization</topic><topic>high performance computing (HPC)</topic><topic>Intel Xeon</topic><topic>Migration</topic><topic>modeling</topic><topic>parallelization</topic><topic>Predictive models</topic><topic>refugees</topic><topic>Simulation</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groen, Derek</creatorcontrib><creatorcontrib>Papadopoulou, Nikela</creatorcontrib><creatorcontrib>Anastasiadis, Petros</creatorcontrib><creatorcontrib>Lawenda, Marcin</creatorcontrib><creatorcontrib>Szustak, Lukasz</creatorcontrib><creatorcontrib>Gogolenko, Sergiy</creatorcontrib><creatorcontrib>Arabnejad, Hamid</creatorcontrib><creatorcontrib>Jahani, Alireza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groen, Derek</au><au>Papadopoulou, Nikela</au><au>Anastasiadis, Petros</au><au>Lawenda, Marcin</au><au>Szustak, Lukasz</au><au>Gogolenko, Sergiy</au><au>Arabnejad, Hamid</au><au>Jahani, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Parallelization of Human Migration Simulation</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>2135</spage><epage>2146</epage><pages>2135-2146</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2023.3292932</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7821-3610</orcidid><orcidid>https://orcid.org/0000-0001-9813-352X</orcidid><orcidid>https://orcid.org/0000-0001-7463-3765</orcidid><orcidid>https://orcid.org/0000-0001-7429-6981</orcidid><orcidid>https://orcid.org/0000-0003-2141-5654</orcidid><orcidid>https://orcid.org/0000-0003-4844-3655</orcidid><orcidid>https://orcid.org/0000-0003-4957-5377</orcidid><orcidid>https://orcid.org/0000-0002-0789-1825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-924X
ispartof IEEE transactions on computational social systems, 2024-04, Vol.11 (2), p.2135-2146
issn 2329-924X
2373-7476
language eng
recordid cdi_ieee_primary_10207715
source IEEE Electronic Library (IEL) Journals
subjects Agent-based models
Algorithms
AMD Rome
Behavioral sciences
benchmarks
Biological system modeling
Codes
computational complexity
Displaced persons
global challenges
global systems science (GSS)
Globalization
high performance computing (HPC)
Intel Xeon
Migration
modeling
parallelization
Predictive models
refugees
Simulation
Sociology
Statistics
Urban areas
title Large-Scale Parallelization of Human Migration Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Parallelization%20of%20Human%20Migration%20Simulation&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Groen,%20Derek&rft.date=2024-04-01&rft.volume=11&rft.issue=2&rft.spage=2135&rft.epage=2146&rft.pages=2135-2146&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2023.3292932&rft_dat=%3Cproquest_ieee_%3E3031399490%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031399490&rft_id=info:pmid/&rft_ieee_id=10207715&rfr_iscdi=true