Loading…
Large-Scale Parallelization of Human Migration Simulation
Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an...
Saved in:
Published in: | IEEE transactions on computational social systems 2024-04, Vol.11 (2), p.2135-2146 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93 |
container_end_page | 2146 |
container_issue | 2 |
container_start_page | 2135 |
container_title | IEEE transactions on computational social systems |
container_volume | 11 |
creator | Groen, Derek Papadopoulou, Nikela Anastasiadis, Petros Lawenda, Marcin Szustak, Lukasz Gogolenko, Sergiy Arabnejad, Hamid Jahani, Alireza |
description | Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead. |
doi_str_mv | 10.1109/TCSS.2023.3292932 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10207715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207715</ieee_id><sourcerecordid>3031399490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFQ_gOAh4Dl1_2Sz2aMUtUJFIRW8LZPdSZuSNHW3QfTTm5ginuYxvPeG-RFyxeiMMapvV_M8n3HKxUxwzbXgJ2TChRKxSlR6OmiuY82T93NyGcKWUsq4lIrTCdFL8GuMcws1Rq_goa6xrr7hULW7qC2jRdfALnqu1n5c5VXT1b_ygpyVUAe8PM4peXu4X80X8fLl8Wl-t4ytSOUh1pg6WUoEkTrLVSEZFMo6LRTnqHjhdKaosAXIjJZ9QkDhLFrHpE6kKLWYknzsDZ-47wqz91UD_su0UBmPAcHbjbEbqBv0wQQ0kABNHJXGZsBMr7TRHDJjnUwZSxMLWPatN2Pr3rcfHYaD2bad3_WPGEEFE1onmvYuNrqsb0PwWP5dZ9QM6M2A3gzozRF9n7keMxUi_vNzqhST4gfwAH-F</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3031399490</pqid></control><display><type>article</type><title>Large-Scale Parallelization of Human Migration Simulation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Groen, Derek ; Papadopoulou, Nikela ; Anastasiadis, Petros ; Lawenda, Marcin ; Szustak, Lukasz ; Gogolenko, Sergiy ; Arabnejad, Hamid ; Jahani, Alireza</creator><creatorcontrib>Groen, Derek ; Papadopoulou, Nikela ; Anastasiadis, Petros ; Lawenda, Marcin ; Szustak, Lukasz ; Gogolenko, Sergiy ; Arabnejad, Hamid ; Jahani, Alireza</creatorcontrib><description>Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.</description><identifier>ISSN: 2329-924X</identifier><identifier>EISSN: 2373-7476</identifier><identifier>DOI: 10.1109/TCSS.2023.3292932</identifier><identifier>CODEN: ITCSGL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agent-based models ; Algorithms ; AMD Rome ; Behavioral sciences ; benchmarks ; Biological system modeling ; Codes ; computational complexity ; Displaced persons ; global challenges ; global systems science (GSS) ; Globalization ; high performance computing (HPC) ; Intel Xeon ; Migration ; modeling ; parallelization ; Predictive models ; refugees ; Simulation ; Sociology ; Statistics ; Urban areas</subject><ispartof>IEEE transactions on computational social systems, 2024-04, Vol.11 (2), p.2135-2146</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93</cites><orcidid>0000-0001-7821-3610 ; 0000-0001-9813-352X ; 0000-0001-7463-3765 ; 0000-0001-7429-6981 ; 0000-0003-2141-5654 ; 0000-0003-4844-3655 ; 0000-0003-4957-5377 ; 0000-0002-0789-1825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/537000$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Groen, Derek</creatorcontrib><creatorcontrib>Papadopoulou, Nikela</creatorcontrib><creatorcontrib>Anastasiadis, Petros</creatorcontrib><creatorcontrib>Lawenda, Marcin</creatorcontrib><creatorcontrib>Szustak, Lukasz</creatorcontrib><creatorcontrib>Gogolenko, Sergiy</creatorcontrib><creatorcontrib>Arabnejad, Hamid</creatorcontrib><creatorcontrib>Jahani, Alireza</creatorcontrib><title>Large-Scale Parallelization of Human Migration Simulation</title><title>IEEE transactions on computational social systems</title><addtitle>TCSS</addtitle><description>Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.</description><subject>Agent-based models</subject><subject>Algorithms</subject><subject>AMD Rome</subject><subject>Behavioral sciences</subject><subject>benchmarks</subject><subject>Biological system modeling</subject><subject>Codes</subject><subject>computational complexity</subject><subject>Displaced persons</subject><subject>global challenges</subject><subject>global systems science (GSS)</subject><subject>Globalization</subject><subject>high performance computing (HPC)</subject><subject>Intel Xeon</subject><subject>Migration</subject><subject>modeling</subject><subject>parallelization</subject><subject>Predictive models</subject><subject>refugees</subject><subject>Simulation</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Urban areas</subject><issn>2329-924X</issn><issn>2373-7476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsFQ_gOAh4Dl1_2Sz2aMUtUJFIRW8LZPdSZuSNHW3QfTTm5ginuYxvPeG-RFyxeiMMapvV_M8n3HKxUxwzbXgJ2TChRKxSlR6OmiuY82T93NyGcKWUsq4lIrTCdFL8GuMcws1Rq_goa6xrr7hULW7qC2jRdfALnqu1n5c5VXT1b_ygpyVUAe8PM4peXu4X80X8fLl8Wl-t4ytSOUh1pg6WUoEkTrLVSEZFMo6LRTnqHjhdKaosAXIjJZ9QkDhLFrHpE6kKLWYknzsDZ-47wqz91UD_su0UBmPAcHbjbEbqBv0wQQ0kABNHJXGZsBMr7TRHDJjnUwZSxMLWPatN2Pr3rcfHYaD2bad3_WPGEEFE1onmvYuNrqsb0PwWP5dZ9QM6M2A3gzozRF9n7keMxUi_vNzqhST4gfwAH-F</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Groen, Derek</creator><creator>Papadopoulou, Nikela</creator><creator>Anastasiadis, Petros</creator><creator>Lawenda, Marcin</creator><creator>Szustak, Lukasz</creator><creator>Gogolenko, Sergiy</creator><creator>Arabnejad, Hamid</creator><creator>Jahani, Alireza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>F1S</scope><orcidid>https://orcid.org/0000-0001-7821-3610</orcidid><orcidid>https://orcid.org/0000-0001-9813-352X</orcidid><orcidid>https://orcid.org/0000-0001-7463-3765</orcidid><orcidid>https://orcid.org/0000-0001-7429-6981</orcidid><orcidid>https://orcid.org/0000-0003-2141-5654</orcidid><orcidid>https://orcid.org/0000-0003-4844-3655</orcidid><orcidid>https://orcid.org/0000-0003-4957-5377</orcidid><orcidid>https://orcid.org/0000-0002-0789-1825</orcidid></search><sort><creationdate>20240401</creationdate><title>Large-Scale Parallelization of Human Migration Simulation</title><author>Groen, Derek ; Papadopoulou, Nikela ; Anastasiadis, Petros ; Lawenda, Marcin ; Szustak, Lukasz ; Gogolenko, Sergiy ; Arabnejad, Hamid ; Jahani, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agent-based models</topic><topic>Algorithms</topic><topic>AMD Rome</topic><topic>Behavioral sciences</topic><topic>benchmarks</topic><topic>Biological system modeling</topic><topic>Codes</topic><topic>computational complexity</topic><topic>Displaced persons</topic><topic>global challenges</topic><topic>global systems science (GSS)</topic><topic>Globalization</topic><topic>high performance computing (HPC)</topic><topic>Intel Xeon</topic><topic>Migration</topic><topic>modeling</topic><topic>parallelization</topic><topic>Predictive models</topic><topic>refugees</topic><topic>Simulation</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Urban areas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Groen, Derek</creatorcontrib><creatorcontrib>Papadopoulou, Nikela</creatorcontrib><creatorcontrib>Anastasiadis, Petros</creatorcontrib><creatorcontrib>Lawenda, Marcin</creatorcontrib><creatorcontrib>Szustak, Lukasz</creatorcontrib><creatorcontrib>Gogolenko, Sergiy</creatorcontrib><creatorcontrib>Arabnejad, Hamid</creatorcontrib><creatorcontrib>Jahani, Alireza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Chalmers tekniska högskola</collection><jtitle>IEEE transactions on computational social systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Groen, Derek</au><au>Papadopoulou, Nikela</au><au>Anastasiadis, Petros</au><au>Lawenda, Marcin</au><au>Szustak, Lukasz</au><au>Gogolenko, Sergiy</au><au>Arabnejad, Hamid</au><au>Jahani, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-Scale Parallelization of Human Migration Simulation</atitle><jtitle>IEEE transactions on computational social systems</jtitle><stitle>TCSS</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>2135</spage><epage>2146</epage><pages>2135-2146</pages><issn>2329-924X</issn><eissn>2373-7476</eissn><coden>ITCSGL</coden><abstract>Forced displacement of people worldwide, for example, due to violent conflicts, is common in the modern world, and today more than 82 million people are forcibly displaced. This puts the problem of migration at the forefront of the most important problems of humanity. The Flee simulation code is an agent-based modeling tool that can forecast population displacements in civil war settings, but performing accurate simulations requires nonnegligible computational capacity. In this article, we present our approach to Flee parallelization for fast execution on multicore platforms, as well as discuss the computational complexity of the algorithm and its implementation. We benchmark parallelized code using supercomputers equipped with AMD EPYC Rome 7742 and Intel Xeon Platinum 8268 processors and investigate its performance across a range of alternative rule sets, different refinements in the spatial representation, and various numbers of agents representing displaced persons. We find that Flee scales excellently to up to 8192 cores for large cases, although very detailed location graphs can impose a large initialization time overhead.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCSS.2023.3292932</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7821-3610</orcidid><orcidid>https://orcid.org/0000-0001-9813-352X</orcidid><orcidid>https://orcid.org/0000-0001-7463-3765</orcidid><orcidid>https://orcid.org/0000-0001-7429-6981</orcidid><orcidid>https://orcid.org/0000-0003-2141-5654</orcidid><orcidid>https://orcid.org/0000-0003-4844-3655</orcidid><orcidid>https://orcid.org/0000-0003-4957-5377</orcidid><orcidid>https://orcid.org/0000-0002-0789-1825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-924X |
ispartof | IEEE transactions on computational social systems, 2024-04, Vol.11 (2), p.2135-2146 |
issn | 2329-924X 2373-7476 |
language | eng |
recordid | cdi_ieee_primary_10207715 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Agent-based models Algorithms AMD Rome Behavioral sciences benchmarks Biological system modeling Codes computational complexity Displaced persons global challenges global systems science (GSS) Globalization high performance computing (HPC) Intel Xeon Migration modeling parallelization Predictive models refugees Simulation Sociology Statistics Urban areas |
title | Large-Scale Parallelization of Human Migration Simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-Scale%20Parallelization%20of%20Human%20Migration%20Simulation&rft.jtitle=IEEE%20transactions%20on%20computational%20social%20systems&rft.au=Groen,%20Derek&rft.date=2024-04-01&rft.volume=11&rft.issue=2&rft.spage=2135&rft.epage=2146&rft.pages=2135-2146&rft.issn=2329-924X&rft.eissn=2373-7476&rft.coden=ITCSGL&rft_id=info:doi/10.1109/TCSS.2023.3292932&rft_dat=%3Cproquest_ieee_%3E3031399490%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-9e6d5f5ea36dc27b51ab7cd93722e72bd98703cba580f3653abdcecd159453f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3031399490&rft_id=info:pmid/&rft_ieee_id=10207715&rfr_iscdi=true |