Loading…

Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance

In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential \vec{A}(\omega) and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector \vec{B}(\omega) as a function of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electromagnetic compatibility 2023-12, Vol.65 (6), p.1-11
Main Author: Zadehgol, Ata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163
container_end_page 11
container_issue 6
container_start_page 1
container_title IEEE transactions on electromagnetic compatibility
container_volume 65
creator Zadehgol, Ata
description In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential \vec{A}(\omega) and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector \vec{B}(\omega) as a function of the solenoid's geometric and material parameters. \vec{A}(\omega) may be used to efficiently compute the frequency-dependent flux linkage \Phi (\omega), the complex inductance L(\omega), and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient \chi (\omega) to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.
doi_str_mv 10.1109/TEMC.2023.3298886
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10210296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210296</ieee_id><sourcerecordid>2901441720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8OrWfGyyybG0W1toEWoFb0s2H5Cy3dTNFuwf8He77fYgDAwz87xzeAB4xGiEMZKvm3w1GRFE6IgSKYTgV2CAGRMJFtnXNRgghEUiacZuwV2M225MGaED8DuuVXVsvVYVXAVjKxgcpMkUzm11Xn6EytbBmwhdaGDunNfe1i2chN3-0KrWh_oUmR5rtfMa5is487Yy8eVMVPYHLmpz0K2qtX2BqjZwrYzvc2sbfTxf7sGNU1W0D5c-BJ-zfDOZJ8v3t8VkvEw0EbJNSm6dKqnLpDTaIM0Qy7jjzlDMXIp4ZiUnokx5Sp1hacmkM1xxorqrSDGnQ_Dc_9034ftgY1tsw6HpFMSCyM5JijOCOgr3lG5CjI11xb7xO9UcC4yKk-7ipLs46S4uurvMU5_x1tp_POlKcvoHeP98Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901441720</pqid></control><display><type>article</type><title>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</title><source>IEEE Xplore (Online service)</source><creator>Zadehgol, Ata</creator><creatorcontrib>Zadehgol, Ata</creatorcontrib><description><![CDATA[In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector <inline-formula><tex-math notation="LaTeX">\vec{B}(\omega)</tex-math></inline-formula> as a function of the solenoid's geometric and material parameters. <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> may be used to efficiently compute the frequency-dependent flux linkage <inline-formula><tex-math notation="LaTeX">\Phi (\omega)</tex-math></inline-formula>, the complex inductance <inline-formula><tex-math notation="LaTeX">L(\omega)</tex-math></inline-formula>, and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient <inline-formula><tex-math notation="LaTeX">\chi (\omega)</tex-math></inline-formula> to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.]]></description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2023.3298886</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Communications systems ; Complex inductance ; Computational efficiency ; Computational modeling ; Conduction ; cylindrical solenoids ; Far fields ; Flux density ; Green's functions ; Inductance ; inductors ; Magnetic flux ; Magnetic vector potentials ; Mathematical models ; Millimeter waves ; multiscale electromagnetics (EMs) ; Numerical models ; Radiation ; Radiation tolerance ; Solenoids ; Solid modeling ; spiral antennas ; Three dimensional models ; Windings ; Wires</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2023-12, Vol.65 (6), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163</cites><orcidid>0000-0002-1111-704X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Zadehgol, Ata</creatorcontrib><title>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description><![CDATA[In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector <inline-formula><tex-math notation="LaTeX">\vec{B}(\omega)</tex-math></inline-formula> as a function of the solenoid's geometric and material parameters. <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> may be used to efficiently compute the frequency-dependent flux linkage <inline-formula><tex-math notation="LaTeX">\Phi (\omega)</tex-math></inline-formula>, the complex inductance <inline-formula><tex-math notation="LaTeX">L(\omega)</tex-math></inline-formula>, and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient <inline-formula><tex-math notation="LaTeX">\chi (\omega)</tex-math></inline-formula> to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.]]></description><subject>Analytical models</subject><subject>Communications systems</subject><subject>Complex inductance</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Conduction</subject><subject>cylindrical solenoids</subject><subject>Far fields</subject><subject>Flux density</subject><subject>Green's functions</subject><subject>Inductance</subject><subject>inductors</subject><subject>Magnetic flux</subject><subject>Magnetic vector potentials</subject><subject>Mathematical models</subject><subject>Millimeter waves</subject><subject>multiscale electromagnetics (EMs)</subject><subject>Numerical models</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Solenoids</subject><subject>Solid modeling</subject><subject>spiral antennas</subject><subject>Three dimensional models</subject><subject>Windings</subject><subject>Wires</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8OrWfGyyybG0W1toEWoFb0s2H5Cy3dTNFuwf8He77fYgDAwz87xzeAB4xGiEMZKvm3w1GRFE6IgSKYTgV2CAGRMJFtnXNRgghEUiacZuwV2M225MGaED8DuuVXVsvVYVXAVjKxgcpMkUzm11Xn6EytbBmwhdaGDunNfe1i2chN3-0KrWh_oUmR5rtfMa5is487Yy8eVMVPYHLmpz0K2qtX2BqjZwrYzvc2sbfTxf7sGNU1W0D5c-BJ-zfDOZJ8v3t8VkvEw0EbJNSm6dKqnLpDTaIM0Qy7jjzlDMXIp4ZiUnokx5Sp1hacmkM1xxorqrSDGnQ_Dc_9034ftgY1tsw6HpFMSCyM5JijOCOgr3lG5CjI11xb7xO9UcC4yKk-7ipLs46S4uurvMU5_x1tp_POlKcvoHeP98Gw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zadehgol, Ata</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1111-704X</orcidid></search><sort><creationdate>20231201</creationdate><title>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</title><author>Zadehgol, Ata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Communications systems</topic><topic>Complex inductance</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Conduction</topic><topic>cylindrical solenoids</topic><topic>Far fields</topic><topic>Flux density</topic><topic>Green's functions</topic><topic>Inductance</topic><topic>inductors</topic><topic>Magnetic flux</topic><topic>Magnetic vector potentials</topic><topic>Mathematical models</topic><topic>Millimeter waves</topic><topic>multiscale electromagnetics (EMs)</topic><topic>Numerical models</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Solenoids</topic><topic>Solid modeling</topic><topic>spiral antennas</topic><topic>Three dimensional models</topic><topic>Windings</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zadehgol, Ata</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zadehgol, Ata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>65</volume><issue>6</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract><![CDATA[In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector <inline-formula><tex-math notation="LaTeX">\vec{B}(\omega)</tex-math></inline-formula> as a function of the solenoid's geometric and material parameters. <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> may be used to efficiently compute the frequency-dependent flux linkage <inline-formula><tex-math notation="LaTeX">\Phi (\omega)</tex-math></inline-formula>, the complex inductance <inline-formula><tex-math notation="LaTeX">L(\omega)</tex-math></inline-formula>, and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient <inline-formula><tex-math notation="LaTeX">\chi (\omega)</tex-math></inline-formula> to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2023.3298886</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1111-704X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2023-12, Vol.65 (6), p.1-11
issn 0018-9375
1558-187X
language eng
recordid cdi_ieee_primary_10210296
source IEEE Xplore (Online service)
subjects Analytical models
Communications systems
Complex inductance
Computational efficiency
Computational modeling
Conduction
cylindrical solenoids
Far fields
Flux density
Green's functions
Inductance
inductors
Magnetic flux
Magnetic vector potentials
Mathematical models
Millimeter waves
multiscale electromagnetics (EMs)
Numerical models
Radiation
Radiation tolerance
Solenoids
Solid modeling
spiral antennas
Three dimensional models
Windings
Wires
title Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Model%20of%203-D%20Helical%20Solenoids%20for%20Efficient%20Computation%20of%20Dynamic%20EM%20Fields,%20Complex%20Inductance,%20and%20Radiation%20Resistance&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Zadehgol,%20Ata&rft.date=2023-12-01&rft.volume=65&rft.issue=6&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2023.3298886&rft_dat=%3Cproquest_ieee_%3E2901441720%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901441720&rft_id=info:pmid/&rft_ieee_id=10210296&rfr_iscdi=true