Loading…
Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance
In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential \vec{A}(\omega) and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector \vec{B}(\omega) as a function of...
Saved in:
Published in: | IEEE transactions on electromagnetic compatibility 2023-12, Vol.65 (6), p.1-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163 |
container_end_page | 11 |
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 65 |
creator | Zadehgol, Ata |
description | In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential \vec{A}(\omega) and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector \vec{B}(\omega) as a function of the solenoid's geometric and material parameters. \vec{A}(\omega) may be used to efficiently compute the frequency-dependent flux linkage \Phi (\omega), the complex inductance L(\omega), and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient \chi (\omega) to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model. |
doi_str_mv | 10.1109/TEMC.2023.3298886 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10210296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210296</ieee_id><sourcerecordid>2901441720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QPAQ8OrWfGyyybG0W1toEWoFb0s2H5Cy3dTNFuwf8He77fYgDAwz87xzeAB4xGiEMZKvm3w1GRFE6IgSKYTgV2CAGRMJFtnXNRgghEUiacZuwV2M225MGaED8DuuVXVsvVYVXAVjKxgcpMkUzm11Xn6EytbBmwhdaGDunNfe1i2chN3-0KrWh_oUmR5rtfMa5is487Yy8eVMVPYHLmpz0K2qtX2BqjZwrYzvc2sbfTxf7sGNU1W0D5c-BJ-zfDOZJ8v3t8VkvEw0EbJNSm6dKqnLpDTaIM0Qy7jjzlDMXIp4ZiUnokx5Sp1hacmkM1xxorqrSDGnQ_Dc_9034ftgY1tsw6HpFMSCyM5JijOCOgr3lG5CjI11xb7xO9UcC4yKk-7ipLs46S4uurvMU5_x1tp_POlKcvoHeP98Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901441720</pqid></control><display><type>article</type><title>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</title><source>IEEE Xplore (Online service)</source><creator>Zadehgol, Ata</creator><creatorcontrib>Zadehgol, Ata</creatorcontrib><description><![CDATA[In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector <inline-formula><tex-math notation="LaTeX">\vec{B}(\omega)</tex-math></inline-formula> as a function of the solenoid's geometric and material parameters. <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> may be used to efficiently compute the frequency-dependent flux linkage <inline-formula><tex-math notation="LaTeX">\Phi (\omega)</tex-math></inline-formula>, the complex inductance <inline-formula><tex-math notation="LaTeX">L(\omega)</tex-math></inline-formula>, and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient <inline-formula><tex-math notation="LaTeX">\chi (\omega)</tex-math></inline-formula> to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.]]></description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2023.3298886</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Communications systems ; Complex inductance ; Computational efficiency ; Computational modeling ; Conduction ; cylindrical solenoids ; Far fields ; Flux density ; Green's functions ; Inductance ; inductors ; Magnetic flux ; Magnetic vector potentials ; Mathematical models ; Millimeter waves ; multiscale electromagnetics (EMs) ; Numerical models ; Radiation ; Radiation tolerance ; Solenoids ; Solid modeling ; spiral antennas ; Three dimensional models ; Windings ; Wires</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2023-12, Vol.65 (6), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163</cites><orcidid>0000-0002-1111-704X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210296$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Zadehgol, Ata</creatorcontrib><title>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description><![CDATA[In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector <inline-formula><tex-math notation="LaTeX">\vec{B}(\omega)</tex-math></inline-formula> as a function of the solenoid's geometric and material parameters. <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> may be used to efficiently compute the frequency-dependent flux linkage <inline-formula><tex-math notation="LaTeX">\Phi (\omega)</tex-math></inline-formula>, the complex inductance <inline-formula><tex-math notation="LaTeX">L(\omega)</tex-math></inline-formula>, and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient <inline-formula><tex-math notation="LaTeX">\chi (\omega)</tex-math></inline-formula> to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.]]></description><subject>Analytical models</subject><subject>Communications systems</subject><subject>Complex inductance</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Conduction</subject><subject>cylindrical solenoids</subject><subject>Far fields</subject><subject>Flux density</subject><subject>Green's functions</subject><subject>Inductance</subject><subject>inductors</subject><subject>Magnetic flux</subject><subject>Magnetic vector potentials</subject><subject>Mathematical models</subject><subject>Millimeter waves</subject><subject>multiscale electromagnetics (EMs)</subject><subject>Numerical models</subject><subject>Radiation</subject><subject>Radiation tolerance</subject><subject>Solenoids</subject><subject>Solid modeling</subject><subject>spiral antennas</subject><subject>Three dimensional models</subject><subject>Windings</subject><subject>Wires</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEQhoMoWKs_QPAQ8OrWfGyyybG0W1toEWoFb0s2H5Cy3dTNFuwf8He77fYgDAwz87xzeAB4xGiEMZKvm3w1GRFE6IgSKYTgV2CAGRMJFtnXNRgghEUiacZuwV2M225MGaED8DuuVXVsvVYVXAVjKxgcpMkUzm11Xn6EytbBmwhdaGDunNfe1i2chN3-0KrWh_oUmR5rtfMa5is487Yy8eVMVPYHLmpz0K2qtX2BqjZwrYzvc2sbfTxf7sGNU1W0D5c-BJ-zfDOZJ8v3t8VkvEw0EbJNSm6dKqnLpDTaIM0Qy7jjzlDMXIp4ZiUnokx5Sp1hacmkM1xxorqrSDGnQ_Dc_9034ftgY1tsw6HpFMSCyM5JijOCOgr3lG5CjI11xb7xO9UcC4yKk-7ipLs46S4uurvMU5_x1tp_POlKcvoHeP98Gw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zadehgol, Ata</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1111-704X</orcidid></search><sort><creationdate>20231201</creationdate><title>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</title><author>Zadehgol, Ata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Communications systems</topic><topic>Complex inductance</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Conduction</topic><topic>cylindrical solenoids</topic><topic>Far fields</topic><topic>Flux density</topic><topic>Green's functions</topic><topic>Inductance</topic><topic>inductors</topic><topic>Magnetic flux</topic><topic>Magnetic vector potentials</topic><topic>Mathematical models</topic><topic>Millimeter waves</topic><topic>multiscale electromagnetics (EMs)</topic><topic>Numerical models</topic><topic>Radiation</topic><topic>Radiation tolerance</topic><topic>Solenoids</topic><topic>Solid modeling</topic><topic>spiral antennas</topic><topic>Three dimensional models</topic><topic>Windings</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zadehgol, Ata</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zadehgol, Ata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>65</volume><issue>6</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract><![CDATA[In this article, we use the dynamic Green's function to produce a frequency-dependent magnetic vector potential <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> and derive expressions for the efficient (accurate and fast) computation of cylindrical components of the magnetic flux density vector <inline-formula><tex-math notation="LaTeX">\vec{B}(\omega)</tex-math></inline-formula> as a function of the solenoid's geometric and material parameters. <inline-formula><tex-math notation="LaTeX">\vec{A}(\omega)</tex-math></inline-formula> may be used to efficiently compute the frequency-dependent flux linkage <inline-formula><tex-math notation="LaTeX">\Phi (\omega)</tex-math></inline-formula>, the complex inductance <inline-formula><tex-math notation="LaTeX">L(\omega)</tex-math></inline-formula>, and the radiation patterns of the solenoid anywhere in space including both near-field and far-field regions, excluding the (source) regions of conducting wire. In addition, we propose the complex calibration coefficient <inline-formula><tex-math notation="LaTeX">\chi (\omega)</tex-math></inline-formula> to account for the finite-radius conductor. Several numerical examples are provided to validate the proposed helical model against the superposition of circular loops. The proposed model is demonstrated for a wide range of applications across the spectrum from 60 Hz to 170 GHz, representing low-frequency power systems to high-frequency mm-wave communication systems. A plan is being developed for experimental validation of the model.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2023.3298886</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1111-704X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2023-12, Vol.65 (6), p.1-11 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_ieee_primary_10210296 |
source | IEEE Xplore (Online service) |
subjects | Analytical models Communications systems Complex inductance Computational efficiency Computational modeling Conduction cylindrical solenoids Far fields Flux density Green's functions Inductance inductors Magnetic flux Magnetic vector potentials Mathematical models Millimeter waves multiscale electromagnetics (EMs) Numerical models Radiation Radiation tolerance Solenoids Solid modeling spiral antennas Three dimensional models Windings Wires |
title | Analytical Model of 3-D Helical Solenoids for Efficient Computation of Dynamic EM Fields, Complex Inductance, and Radiation Resistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Model%20of%203-D%20Helical%20Solenoids%20for%20Efficient%20Computation%20of%20Dynamic%20EM%20Fields,%20Complex%20Inductance,%20and%20Radiation%20Resistance&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Zadehgol,%20Ata&rft.date=2023-12-01&rft.volume=65&rft.issue=6&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2023.3298886&rft_dat=%3Cproquest_ieee_%3E2901441720%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-b6efab3f799dcd0c50576f6fd315f4067e9628b4643fd54b59fd6a62a5f484163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901441720&rft_id=info:pmid/&rft_ieee_id=10210296&rfr_iscdi=true |