Loading…

Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters

In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environme...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on aerospace and electronic systems 2023-12, Vol.59 (6), p.1-15
Main Authors: Wang, Junan, Zhu, Bing, Zheng, Zewei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3
cites cdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3
container_end_page 15
container_issue 6
container_start_page 1
container_title IEEE transactions on aerospace and electronic systems
container_volume 59
creator Wang, Junan
Zhu, Bing
Zheng, Zewei
description In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.
doi_str_mv 10.1109/TAES.2023.3303133
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10210654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210654</ieee_id><sourcerecordid>2901444125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcD1jXtMky6HUBxS02uoyZCYJTmknNckI_femtAtX98E593A_AG4xKjFG8mFZzz5KgggtKUUUU3oGRriqeCEniJ6DEUJYFJJU-BJcxbjOIxOMjsDi3TdDTLA2epe6Xwunvk_Bb6DzAWq4GLQJPuV-VX_Cry59w1Xf2pB018PaBm_2vd52LXzTQW9tsiFegwunN9HenOoYrB5ny-lzMX99epnW86IlkqVCIE5bY6i0lHPBDeakqXjjHMayYZIbaRsnBMs77VAjnWSSUDLRDZFEIEPH4P54dxf8z2BjUms_hD5HKiLze4xhUmUVPqra4GMM1qld6LY67BVG6kBOHcipAzl1Ipc9d0dPZ639pycYTSpG_wBoJ2k1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901444125</pqid></control><display><type>article</type><title>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Junan ; Zhu, Bing ; Zheng, Zewei</creator><creatorcontrib>Wang, Junan ; Zhu, Bing ; Zheng, Zewei</creatorcontrib><description>In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3303133</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Aerodynamics ; Autonomous aerial vehicles ; Background noise ; Backstepping ; Closed loops ; Continuity (mathematics) ; Control systems design ; Controllers ; Damping ; Design parameters ; disturbances ; Drag coefficients ; Euler angles ; Feedback control ; Global Positioning System ; Lipschitz condition ; Mathematical models ; Noise measurement ; Parameter uncertainty ; Proportional integral derivative ; quadrotor ; Quadrotors ; Robust control ; Rotary wing aircraft ; Tracking errors ; Trigonometric functions ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</citedby><cites>FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</cites><orcidid>0000-0001-9412-4271 ; 0000-0001-9839-5757 ; 0009-0004-5679-2550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Junan</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Zheng, Zewei</creatorcontrib><title>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Aerodynamics</subject><subject>Autonomous aerial vehicles</subject><subject>Background noise</subject><subject>Backstepping</subject><subject>Closed loops</subject><subject>Continuity (mathematics)</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Damping</subject><subject>Design parameters</subject><subject>disturbances</subject><subject>Drag coefficients</subject><subject>Euler angles</subject><subject>Feedback control</subject><subject>Global Positioning System</subject><subject>Lipschitz condition</subject><subject>Mathematical models</subject><subject>Noise measurement</subject><subject>Parameter uncertainty</subject><subject>Proportional integral derivative</subject><subject>quadrotor</subject><subject>Quadrotors</subject><subject>Robust control</subject><subject>Rotary wing aircraft</subject><subject>Tracking errors</subject><subject>Trigonometric functions</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWKs_QHARcD1jXtMky6HUBxS02uoyZCYJTmknNckI_femtAtX98E593A_AG4xKjFG8mFZzz5KgggtKUUUU3oGRriqeCEniJ6DEUJYFJJU-BJcxbjOIxOMjsDi3TdDTLA2epe6Xwunvk_Bb6DzAWq4GLQJPuV-VX_Cry59w1Xf2pB018PaBm_2vd52LXzTQW9tsiFegwunN9HenOoYrB5ny-lzMX99epnW86IlkqVCIE5bY6i0lHPBDeakqXjjHMayYZIbaRsnBMs77VAjnWSSUDLRDZFEIEPH4P54dxf8z2BjUms_hD5HKiLze4xhUmUVPqra4GMM1qld6LY67BVG6kBOHcipAzl1Ipc9d0dPZ639pycYTSpG_wBoJ2k1</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Junan</creator><creator>Zhu, Bing</creator><creator>Zheng, Zewei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9412-4271</orcidid><orcidid>https://orcid.org/0000-0001-9839-5757</orcidid><orcidid>https://orcid.org/0009-0004-5679-2550</orcidid></search><sort><creationdate>20231201</creationdate><title>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</title><author>Wang, Junan ; Zhu, Bing ; Zheng, Zewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Aerodynamics</topic><topic>Autonomous aerial vehicles</topic><topic>Background noise</topic><topic>Backstepping</topic><topic>Closed loops</topic><topic>Continuity (mathematics)</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Damping</topic><topic>Design parameters</topic><topic>disturbances</topic><topic>Drag coefficients</topic><topic>Euler angles</topic><topic>Feedback control</topic><topic>Global Positioning System</topic><topic>Lipschitz condition</topic><topic>Mathematical models</topic><topic>Noise measurement</topic><topic>Parameter uncertainty</topic><topic>Proportional integral derivative</topic><topic>quadrotor</topic><topic>Quadrotors</topic><topic>Robust control</topic><topic>Rotary wing aircraft</topic><topic>Tracking errors</topic><topic>Trigonometric functions</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junan</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Zheng, Zewei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junan</au><au>Zhu, Bing</au><au>Zheng, Zewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3303133</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9412-4271</orcidid><orcidid>https://orcid.org/0000-0001-9839-5757</orcidid><orcidid>https://orcid.org/0009-0004-5679-2550</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15
issn 0018-9251
1557-9603
language eng
recordid cdi_ieee_primary_10210654
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Adaptive control
Aerodynamics
Autonomous aerial vehicles
Background noise
Backstepping
Closed loops
Continuity (mathematics)
Control systems design
Controllers
Damping
Design parameters
disturbances
Drag coefficients
Euler angles
Feedback control
Global Positioning System
Lipschitz condition
Mathematical models
Noise measurement
Parameter uncertainty
Proportional integral derivative
quadrotor
Quadrotors
Robust control
Rotary wing aircraft
Tracking errors
Trigonometric functions
Unmanned aerial vehicles
title Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Control%20for%20a%20Quadrotor%20UAV%20With%20Uncertain%20Aerodynamic%20Parameters&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Wang,%20Junan&rft.date=2023-12-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3303133&rft_dat=%3Cproquest_ieee_%3E2901444125%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901444125&rft_id=info:pmid/&rft_ieee_id=10210654&rfr_iscdi=true