Loading…
Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters
In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environme...
Saved in:
Published in: | IEEE transactions on aerospace and electronic systems 2023-12, Vol.59 (6), p.1-15 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3 |
container_end_page | 15 |
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 59 |
creator | Wang, Junan Zhu, Bing Zheng, Zewei |
description | In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided. |
doi_str_mv | 10.1109/TAES.2023.3303133 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10210654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10210654</ieee_id><sourcerecordid>2901444125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKs_QHARcD1jXtMky6HUBxS02uoyZCYJTmknNckI_femtAtX98E593A_AG4xKjFG8mFZzz5KgggtKUUUU3oGRriqeCEniJ6DEUJYFJJU-BJcxbjOIxOMjsDi3TdDTLA2epe6Xwunvk_Bb6DzAWq4GLQJPuV-VX_Cry59w1Xf2pB018PaBm_2vd52LXzTQW9tsiFegwunN9HenOoYrB5ny-lzMX99epnW86IlkqVCIE5bY6i0lHPBDeakqXjjHMayYZIbaRsnBMs77VAjnWSSUDLRDZFEIEPH4P54dxf8z2BjUms_hD5HKiLze4xhUmUVPqra4GMM1qld6LY67BVG6kBOHcipAzl1Ipc9d0dPZ639pycYTSpG_wBoJ2k1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901444125</pqid></control><display><type>article</type><title>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Junan ; Zhu, Bing ; Zheng, Zewei</creator><creatorcontrib>Wang, Junan ; Zhu, Bing ; Zheng, Zewei</creatorcontrib><description>In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3303133</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Aerodynamics ; Autonomous aerial vehicles ; Background noise ; Backstepping ; Closed loops ; Continuity (mathematics) ; Control systems design ; Controllers ; Damping ; Design parameters ; disturbances ; Drag coefficients ; Euler angles ; Feedback control ; Global Positioning System ; Lipschitz condition ; Mathematical models ; Noise measurement ; Parameter uncertainty ; Proportional integral derivative ; quadrotor ; Quadrotors ; Robust control ; Rotary wing aircraft ; Tracking errors ; Trigonometric functions ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</citedby><cites>FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</cites><orcidid>0000-0001-9412-4271 ; 0000-0001-9839-5757 ; 0009-0004-5679-2550</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10210654$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Junan</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Zheng, Zewei</creatorcontrib><title>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Aerodynamics</subject><subject>Autonomous aerial vehicles</subject><subject>Background noise</subject><subject>Backstepping</subject><subject>Closed loops</subject><subject>Continuity (mathematics)</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Damping</subject><subject>Design parameters</subject><subject>disturbances</subject><subject>Drag coefficients</subject><subject>Euler angles</subject><subject>Feedback control</subject><subject>Global Positioning System</subject><subject>Lipschitz condition</subject><subject>Mathematical models</subject><subject>Noise measurement</subject><subject>Parameter uncertainty</subject><subject>Proportional integral derivative</subject><subject>quadrotor</subject><subject>Quadrotors</subject><subject>Robust control</subject><subject>Rotary wing aircraft</subject><subject>Tracking errors</subject><subject>Trigonometric functions</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWKs_QHARcD1jXtMky6HUBxS02uoyZCYJTmknNckI_femtAtX98E593A_AG4xKjFG8mFZzz5KgggtKUUUU3oGRriqeCEniJ6DEUJYFJJU-BJcxbjOIxOMjsDi3TdDTLA2epe6Xwunvk_Bb6DzAWq4GLQJPuV-VX_Cry59w1Xf2pB018PaBm_2vd52LXzTQW9tsiFegwunN9HenOoYrB5ny-lzMX99epnW86IlkqVCIE5bY6i0lHPBDeakqXjjHMayYZIbaRsnBMs77VAjnWSSUDLRDZFEIEPH4P54dxf8z2BjUms_hD5HKiLze4xhUmUVPqra4GMM1qld6LY67BVG6kBOHcipAzl1Ipc9d0dPZ639pycYTSpG_wBoJ2k1</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Junan</creator><creator>Zhu, Bing</creator><creator>Zheng, Zewei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9412-4271</orcidid><orcidid>https://orcid.org/0000-0001-9839-5757</orcidid><orcidid>https://orcid.org/0009-0004-5679-2550</orcidid></search><sort><creationdate>20231201</creationdate><title>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</title><author>Wang, Junan ; Zhu, Bing ; Zheng, Zewei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Aerodynamics</topic><topic>Autonomous aerial vehicles</topic><topic>Background noise</topic><topic>Backstepping</topic><topic>Closed loops</topic><topic>Continuity (mathematics)</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Damping</topic><topic>Design parameters</topic><topic>disturbances</topic><topic>Drag coefficients</topic><topic>Euler angles</topic><topic>Feedback control</topic><topic>Global Positioning System</topic><topic>Lipschitz condition</topic><topic>Mathematical models</topic><topic>Noise measurement</topic><topic>Parameter uncertainty</topic><topic>Proportional integral derivative</topic><topic>quadrotor</topic><topic>Quadrotors</topic><topic>Robust control</topic><topic>Rotary wing aircraft</topic><topic>Tracking errors</topic><topic>Trigonometric functions</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junan</creatorcontrib><creatorcontrib>Zhu, Bing</creatorcontrib><creatorcontrib>Zheng, Zewei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Junan</au><au>Zhu, Bing</au><au>Zheng, Zewei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>In controller design for quadrotors, the drag coefficients, thrust coefficients and aerodynamic damping coefficients are usually un-measurable, and they have to be regarded as uncertain parameters. Meanwhile, the position information provided by the GPS receiver is easy to get disturbed by environmental noise. A backstepping-based robust adaptive control scheme is proposed in this paper to address uncertain parameters, bounded external disturbances and the noise in measurement. The proposed approach overcomes singularities resulted from using inverse trigonometric functions of Euler angles. A continuous function is introduced to replace signum functions, such that the closed-loop system satisfies Lipschitz condition. Boundedness of estimation errors and tracking errors are guaranteed by the proposed approach and their boundary can be modified. The advantages of the proposed controller are supported by numerical examples and experimental results, where comparisons with PID, backstepping, geometric control and the other existing robust adaptive controller are provided.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3303133</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9412-4271</orcidid><orcidid>https://orcid.org/0000-0001-9839-5757</orcidid><orcidid>https://orcid.org/0009-0004-5679-2550</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_ieee_primary_10210654 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Adaptive control Aerodynamics Autonomous aerial vehicles Background noise Backstepping Closed loops Continuity (mathematics) Control systems design Controllers Damping Design parameters disturbances Drag coefficients Euler angles Feedback control Global Positioning System Lipschitz condition Mathematical models Noise measurement Parameter uncertainty Proportional integral derivative quadrotor Quadrotors Robust control Rotary wing aircraft Tracking errors Trigonometric functions Unmanned aerial vehicles |
title | Robust Adaptive Control for a Quadrotor UAV With Uncertain Aerodynamic Parameters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Adaptive%20Control%20for%20a%20Quadrotor%20UAV%20With%20Uncertain%20Aerodynamic%20Parameters&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Wang,%20Junan&rft.date=2023-12-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3303133&rft_dat=%3Cproquest_ieee_%3E2901444125%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-8073cdd39e37787d172b57bff119b497d9ebf88457baf0b9f9492326ab29280d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901444125&rft_id=info:pmid/&rft_ieee_id=10210654&rfr_iscdi=true |