Loading…

A brazilian study on data-driven public service readiness

Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population's poverty. This article aims to propose steps to improve agencies' readiness to transform their operation model into a data-driven public service (DDPS). Theref...

Full description

Saved in:
Bibliographic Details
Main Authors: Melo, Adriane Medeiros, Mariano, Ari Melo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Melo, Adriane Medeiros
Mariano, Ari Melo
description Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population's poverty. This article aims to propose steps to improve agencies' readiness to transform their operation model into a data-driven public service (DDPS). Therefore, explanatory research with a quantitative approach was used through structural equations to validate the model, based on data collected from a questionnaire applied to 101 Brazilian public servants. The results revealed that Operational Capacity factor (37.7 \%) has the greatest impact on readiness for the transition to DDPS, when using partial least squares structural equation modeling (PLS-SEM).
doi_str_mv 10.23919/CISTI58278.2023.10211899
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10211899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10211899</ieee_id><sourcerecordid>10211899</sourcerecordid><originalsourceid>FETCH-LOGICAL-i498-5d3ee8002cbea1ccea082dad94f584aa247224b2e7ba9463c034d12a72c891493</originalsourceid><addsrcrecordid>eNo1z81KxDAUQOEoCA5j38BFfIDW5CZtcpdD8acw4MLuh9vkDkRqHZKZgfHpXairs_vgCPGgVQMGNT72w_s4tB6cb0CBabQCrT3ilajQefRojHUI_lqsQHddrRy4W1GV8qGUMtq5FtxK4EZOmb7TnGiR5XiKF_m1yEhHqmNOZ17k4TTNKcjC-ZwCy8wU08Kl3ImbPc2Fq7-uxfj8NPav9fbtZeg32zpZ9HUbDbNXCsLEpENgUh4iRbT71lsisA7ATsBuIrSdCcrYqIEcBI_aolmL-182MfPukNMn5cvuf9b8AClISUE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A brazilian study on data-driven public service readiness</title><source>IEEE Xplore All Conference Series</source><creator>Melo, Adriane Medeiros ; Mariano, Ari Melo</creator><creatorcontrib>Melo, Adriane Medeiros ; Mariano, Ari Melo</creatorcontrib><description>Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population's poverty. This article aims to propose steps to improve agencies' readiness to transform their operation model into a data-driven public service (DDPS). Therefore, explanatory research with a quantitative approach was used through structural equations to validate the model, based on data collected from a questionnaire applied to 101 Brazilian public servants. The results revealed that Operational Capacity factor (37.7 \%) has the greatest impact on readiness for the transition to DDPS, when using partial least squares structural equation modeling (PLS-SEM).</description><identifier>EISSN: 2166-0727</identifier><identifier>EISBN: 9789893347928</identifier><identifier>EISBN: 9893347920</identifier><identifier>DOI: 10.23919/CISTI58278.2023.10211899</identifier><language>eng</language><publisher>ITMA</publisher><subject>Applied computing ; Brazil ; Computational modeling ; Data models ; Data-driven Government ; Digital transformation ; Engines ; Information systems ; Mathematical models ; PLS-SEM ; Transforms</subject><ispartof>2023 18th Iberian Conference on Information Systems and Technologies (CISTI), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10211899$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10211899$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Melo, Adriane Medeiros</creatorcontrib><creatorcontrib>Mariano, Ari Melo</creatorcontrib><title>A brazilian study on data-driven public service readiness</title><title>2023 18th Iberian Conference on Information Systems and Technologies (CISTI)</title><addtitle>CISTI</addtitle><description>Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population's poverty. This article aims to propose steps to improve agencies' readiness to transform their operation model into a data-driven public service (DDPS). Therefore, explanatory research with a quantitative approach was used through structural equations to validate the model, based on data collected from a questionnaire applied to 101 Brazilian public servants. The results revealed that Operational Capacity factor (37.7 \%) has the greatest impact on readiness for the transition to DDPS, when using partial least squares structural equation modeling (PLS-SEM).</description><subject>Applied computing</subject><subject>Brazil</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data-driven Government</subject><subject>Digital transformation</subject><subject>Engines</subject><subject>Information systems</subject><subject>Mathematical models</subject><subject>PLS-SEM</subject><subject>Transforms</subject><issn>2166-0727</issn><isbn>9789893347928</isbn><isbn>9893347920</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1z81KxDAUQOEoCA5j38BFfIDW5CZtcpdD8acw4MLuh9vkDkRqHZKZgfHpXairs_vgCPGgVQMGNT72w_s4tB6cb0CBabQCrT3ilajQefRojHUI_lqsQHddrRy4W1GV8qGUMtq5FtxK4EZOmb7TnGiR5XiKF_m1yEhHqmNOZ17k4TTNKcjC-ZwCy8wU08Kl3ImbPc2Fq7-uxfj8NPav9fbtZeg32zpZ9HUbDbNXCsLEpENgUh4iRbT71lsisA7ATsBuIrSdCcrYqIEcBI_aolmL-182MfPukNMn5cvuf9b8AClISUE</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Melo, Adriane Medeiros</creator><creator>Mariano, Ari Melo</creator><general>ITMA</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230620</creationdate><title>A brazilian study on data-driven public service readiness</title><author>Melo, Adriane Medeiros ; Mariano, Ari Melo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i498-5d3ee8002cbea1ccea082dad94f584aa247224b2e7ba9463c034d12a72c891493</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied computing</topic><topic>Brazil</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data-driven Government</topic><topic>Digital transformation</topic><topic>Engines</topic><topic>Information systems</topic><topic>Mathematical models</topic><topic>PLS-SEM</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Melo, Adriane Medeiros</creatorcontrib><creatorcontrib>Mariano, Ari Melo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Melo, Adriane Medeiros</au><au>Mariano, Ari Melo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A brazilian study on data-driven public service readiness</atitle><btitle>2023 18th Iberian Conference on Information Systems and Technologies (CISTI)</btitle><stitle>CISTI</stitle><date>2023-06-20</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2166-0727</eissn><eisbn>9789893347928</eisbn><eisbn>9893347920</eisbn><abstract>Data is an engine for public sector digital transformation, whose potential is to improve social well-being and combat population's poverty. This article aims to propose steps to improve agencies' readiness to transform their operation model into a data-driven public service (DDPS). Therefore, explanatory research with a quantitative approach was used through structural equations to validate the model, based on data collected from a questionnaire applied to 101 Brazilian public servants. The results revealed that Operational Capacity factor (37.7 \%) has the greatest impact on readiness for the transition to DDPS, when using partial least squares structural equation modeling (PLS-SEM).</abstract><pub>ITMA</pub><doi>10.23919/CISTI58278.2023.10211899</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2166-0727
ispartof 2023 18th Iberian Conference on Information Systems and Technologies (CISTI), 2023, p.1-6
issn 2166-0727
language eng
recordid cdi_ieee_primary_10211899
source IEEE Xplore All Conference Series
subjects Applied computing
Brazil
Computational modeling
Data models
Data-driven Government
Digital transformation
Engines
Information systems
Mathematical models
PLS-SEM
Transforms
title A brazilian study on data-driven public service readiness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20brazilian%20study%20on%20data-driven%20public%20service%20readiness&rft.btitle=2023%2018th%20Iberian%20Conference%20on%20Information%20Systems%20and%20Technologies%20(CISTI)&rft.au=Melo,%20Adriane%20Medeiros&rft.date=2023-06-20&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2166-0727&rft_id=info:doi/10.23919/CISTI58278.2023.10211899&rft.eisbn=9789893347928&rft.eisbn_list=9893347920&rft_dat=%3Cieee_CHZPO%3E10211899%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i498-5d3ee8002cbea1ccea082dad94f584aa247224b2e7ba9463c034d12a72c891493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10211899&rfr_iscdi=true