Loading…

Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis

The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By de...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2023-10, Vol.71 (10), p.1-1
Main Authors: Hei, Yong Qiang, Ma, Long Yuan, Li, Wen Tao, Mou, Jin Chao, Shi, Xiao Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123
cites cdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123
container_end_page 1
container_issue 10
container_start_page 1
container_title IEEE transactions on antennas and propagation
container_volume 71
creator Hei, Yong Qiang
Ma, Long Yuan
Li, Wen Tao
Mou, Jin Chao
Shi, Xiao Wei
description The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.
doi_str_mv 10.1109/TAP.2023.3303464
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10217162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10217162</ieee_id><sourcerecordid>2873585032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</originalsourceid><addsrcrecordid>eNpNkEtLAzEURoMoWKt7Fy4GXE_NezLLUtoq1BdWcBcymRtMbTs1ySj9904fC1ffvXC-e-EgdE3wgBBc3s2HLwOKKRswhhmX_AT1iBAqp5SSU9TDmKi8pPLjHF3EuOhWrjjvodexc2CT_4FsGJJ33nqzzJ6gDftIv034yibBrGA_uSZkc7-C_LGp26VJUHe1YLYxe9uu0ydEHy_RmTPLCFfH7KP3yXg-us9nz9OH0XCWW1rSlMuK0xKsgVrYUuFCSigV2EoqBgKYJRW4whGniCmAYKitc5jLShYSC0Yo66Pbw91NaL5biEkvmjasu5eaqoIJJTDbUfhA2dDEGMDpTfArE7aaYL0TpztxeidOH8V1lZtDxQPAP5ySgkjK_gDeKmoy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585032</pqid></control><display><type>article</type><title>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hei, Yong Qiang ; Ma, Long Yuan ; Li, Wen Tao ; Mou, Jin Chao ; Shi, Xiao Wei</creator><creatorcontrib>Hei, Yong Qiang ; Ma, Long Yuan ; Li, Wen Tao ; Mou, Jin Chao ; Shi, Xiao Wei</creatorcontrib><description>The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3303464</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude modulation ; Antenna arrays ; array synthesis ; Artificial neural network ; Artificial neural networks ; Coders ; Decoding ; Equivalence ; Excitation ; focused beampattern ; Harmonic analysis ; Neural networks ; Optimization ; Optimization techniques ; Phased arrays ; shaped beampattern ; SISO (control systems) ; Switches ; Synthesis ; time-modulated antenna array</subject><ispartof>IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</citedby><cites>FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</cites><orcidid>0000-0003-0034-3401 ; 0000-0001-6662-5781 ; 0000-0003-4146-9916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10217162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hei, Yong Qiang</creatorcontrib><creatorcontrib>Ma, Long Yuan</creatorcontrib><creatorcontrib>Li, Wen Tao</creatorcontrib><creatorcontrib>Mou, Jin Chao</creatorcontrib><creatorcontrib>Shi, Xiao Wei</creatorcontrib><title>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.</description><subject>Amplitude modulation</subject><subject>Antenna arrays</subject><subject>array synthesis</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Coders</subject><subject>Decoding</subject><subject>Equivalence</subject><subject>Excitation</subject><subject>focused beampattern</subject><subject>Harmonic analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Phased arrays</subject><subject>shaped beampattern</subject><subject>SISO (control systems)</subject><subject>Switches</subject><subject>Synthesis</subject><subject>time-modulated antenna array</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEURoMoWKt7Fy4GXE_NezLLUtoq1BdWcBcymRtMbTs1ySj9904fC1ffvXC-e-EgdE3wgBBc3s2HLwOKKRswhhmX_AT1iBAqp5SSU9TDmKi8pPLjHF3EuOhWrjjvodexc2CT_4FsGJJ33nqzzJ6gDftIv034yibBrGA_uSZkc7-C_LGp26VJUHe1YLYxe9uu0ydEHy_RmTPLCFfH7KP3yXg-us9nz9OH0XCWW1rSlMuK0xKsgVrYUuFCSigV2EoqBgKYJRW4whGniCmAYKitc5jLShYSC0Yo66Pbw91NaL5biEkvmjasu5eaqoIJJTDbUfhA2dDEGMDpTfArE7aaYL0TpztxeidOH8V1lZtDxQPAP5ySgkjK_gDeKmoy</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Hei, Yong Qiang</creator><creator>Ma, Long Yuan</creator><creator>Li, Wen Tao</creator><creator>Mou, Jin Chao</creator><creator>Shi, Xiao Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0034-3401</orcidid><orcidid>https://orcid.org/0000-0001-6662-5781</orcidid><orcidid>https://orcid.org/0000-0003-4146-9916</orcidid></search><sort><creationdate>20231001</creationdate><title>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</title><author>Hei, Yong Qiang ; Ma, Long Yuan ; Li, Wen Tao ; Mou, Jin Chao ; Shi, Xiao Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude modulation</topic><topic>Antenna arrays</topic><topic>array synthesis</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Coders</topic><topic>Decoding</topic><topic>Equivalence</topic><topic>Excitation</topic><topic>focused beampattern</topic><topic>Harmonic analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Phased arrays</topic><topic>shaped beampattern</topic><topic>SISO (control systems)</topic><topic>Switches</topic><topic>Synthesis</topic><topic>time-modulated antenna array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hei, Yong Qiang</creatorcontrib><creatorcontrib>Ma, Long Yuan</creatorcontrib><creatorcontrib>Li, Wen Tao</creatorcontrib><creatorcontrib>Mou, Jin Chao</creatorcontrib><creatorcontrib>Shi, Xiao Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hei, Yong Qiang</au><au>Ma, Long Yuan</au><au>Li, Wen Tao</au><au>Mou, Jin Chao</au><au>Shi, Xiao Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>71</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3303464</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0034-3401</orcidid><orcidid>https://orcid.org/0000-0001-6662-5781</orcidid><orcidid>https://orcid.org/0000-0003-4146-9916</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1
issn 0018-926X
1558-2221
language eng
recordid cdi_ieee_primary_10217162
source IEEE Electronic Library (IEL) Journals
subjects Amplitude modulation
Antenna arrays
array synthesis
Artificial neural network
Artificial neural networks
Coders
Decoding
Equivalence
Excitation
focused beampattern
Harmonic analysis
Neural networks
Optimization
Optimization techniques
Phased arrays
shaped beampattern
SISO (control systems)
Switches
Synthesis
time-modulated antenna array
title Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Artificial%20Neural%20Network%20Framework%20for%20Time-Modulated%20Arrays%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Hei,%20Yong%20Qiang&rft.date=2023-10-01&rft.volume=71&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3303464&rft_dat=%3Cproquest_ieee_%3E2873585032%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873585032&rft_id=info:pmid/&rft_ieee_id=10217162&rfr_iscdi=true