Loading…
Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis
The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By de...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2023-10, Vol.71 (10), p.1-1 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123 |
container_end_page | 1 |
container_issue | 10 |
container_start_page | 1 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 71 |
creator | Hei, Yong Qiang Ma, Long Yuan Li, Wen Tao Mou, Jin Chao Shi, Xiao Wei |
description | The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach. |
doi_str_mv | 10.1109/TAP.2023.3303464 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10217162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10217162</ieee_id><sourcerecordid>2873585032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</originalsourceid><addsrcrecordid>eNpNkEtLAzEURoMoWKt7Fy4GXE_NezLLUtoq1BdWcBcymRtMbTs1ySj9904fC1ffvXC-e-EgdE3wgBBc3s2HLwOKKRswhhmX_AT1iBAqp5SSU9TDmKi8pPLjHF3EuOhWrjjvodexc2CT_4FsGJJ33nqzzJ6gDftIv034yibBrGA_uSZkc7-C_LGp26VJUHe1YLYxe9uu0ydEHy_RmTPLCFfH7KP3yXg-us9nz9OH0XCWW1rSlMuK0xKsgVrYUuFCSigV2EoqBgKYJRW4whGniCmAYKitc5jLShYSC0Yo66Pbw91NaL5biEkvmjasu5eaqoIJJTDbUfhA2dDEGMDpTfArE7aaYL0TpztxeidOH8V1lZtDxQPAP5ySgkjK_gDeKmoy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873585032</pqid></control><display><type>article</type><title>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Hei, Yong Qiang ; Ma, Long Yuan ; Li, Wen Tao ; Mou, Jin Chao ; Shi, Xiao Wei</creator><creatorcontrib>Hei, Yong Qiang ; Ma, Long Yuan ; Li, Wen Tao ; Mou, Jin Chao ; Shi, Xiao Wei</creatorcontrib><description>The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2023.3303464</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitude modulation ; Antenna arrays ; array synthesis ; Artificial neural network ; Artificial neural networks ; Coders ; Decoding ; Equivalence ; Excitation ; focused beampattern ; Harmonic analysis ; Neural networks ; Optimization ; Optimization techniques ; Phased arrays ; shaped beampattern ; SISO (control systems) ; Switches ; Synthesis ; time-modulated antenna array</subject><ispartof>IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</citedby><cites>FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</cites><orcidid>0000-0003-0034-3401 ; 0000-0001-6662-5781 ; 0000-0003-4146-9916</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10217162$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Hei, Yong Qiang</creatorcontrib><creatorcontrib>Ma, Long Yuan</creatorcontrib><creatorcontrib>Li, Wen Tao</creatorcontrib><creatorcontrib>Mou, Jin Chao</creatorcontrib><creatorcontrib>Shi, Xiao Wei</creatorcontrib><title>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.</description><subject>Amplitude modulation</subject><subject>Antenna arrays</subject><subject>array synthesis</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Coders</subject><subject>Decoding</subject><subject>Equivalence</subject><subject>Excitation</subject><subject>focused beampattern</subject><subject>Harmonic analysis</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Phased arrays</subject><subject>shaped beampattern</subject><subject>SISO (control systems)</subject><subject>Switches</subject><subject>Synthesis</subject><subject>time-modulated antenna array</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEURoMoWKt7Fy4GXE_NezLLUtoq1BdWcBcymRtMbTs1ySj9904fC1ffvXC-e-EgdE3wgBBc3s2HLwOKKRswhhmX_AT1iBAqp5SSU9TDmKi8pPLjHF3EuOhWrjjvodexc2CT_4FsGJJ33nqzzJ6gDftIv034yibBrGA_uSZkc7-C_LGp26VJUHe1YLYxe9uu0ydEHy_RmTPLCFfH7KP3yXg-us9nz9OH0XCWW1rSlMuK0xKsgVrYUuFCSigV2EoqBgKYJRW4whGniCmAYKitc5jLShYSC0Yo66Pbw91NaL5biEkvmjasu5eaqoIJJTDbUfhA2dDEGMDpTfArE7aaYL0TpztxeidOH8V1lZtDxQPAP5ySgkjK_gDeKmoy</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Hei, Yong Qiang</creator><creator>Ma, Long Yuan</creator><creator>Li, Wen Tao</creator><creator>Mou, Jin Chao</creator><creator>Shi, Xiao Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0034-3401</orcidid><orcidid>https://orcid.org/0000-0001-6662-5781</orcidid><orcidid>https://orcid.org/0000-0003-4146-9916</orcidid></search><sort><creationdate>20231001</creationdate><title>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</title><author>Hei, Yong Qiang ; Ma, Long Yuan ; Li, Wen Tao ; Mou, Jin Chao ; Shi, Xiao Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplitude modulation</topic><topic>Antenna arrays</topic><topic>array synthesis</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Coders</topic><topic>Decoding</topic><topic>Equivalence</topic><topic>Excitation</topic><topic>focused beampattern</topic><topic>Harmonic analysis</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Phased arrays</topic><topic>shaped beampattern</topic><topic>SISO (control systems)</topic><topic>Switches</topic><topic>Synthesis</topic><topic>time-modulated antenna array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hei, Yong Qiang</creatorcontrib><creatorcontrib>Ma, Long Yuan</creatorcontrib><creatorcontrib>Li, Wen Tao</creatorcontrib><creatorcontrib>Mou, Jin Chao</creatorcontrib><creatorcontrib>Shi, Xiao Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hei, Yong Qiang</au><au>Ma, Long Yuan</au><au>Li, Wen Tao</au><au>Mou, Jin Chao</au><au>Shi, Xiao Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>71</volume><issue>10</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>The antenna array synthesis problem has long been known as a tough issue, which attracts considerable interests to explore high-performance low-complexity optimization techniques. In this paper, an efficient artificial neural network (ANN) for time-modulated arrays (TMA) synthesis is proposed. By defining the equivalent excitation properly, TMA synthesis can be first transformed to a generalized phased array optimization. Next, a two-stage ANN framework composed of two encoders and a universal decoder is established to optimize the equivalent excitation, and then a single-input single-output (SISO) sinc -1 -ANN is proposed to solve inverse of sinc(·) efficiently. To achieve fast and accurate pattern prediction, the decoder is pre-trained to be a real-time array analyzer, while the encoder is designed as an array synthesizer to develop online training. By minimizing the loss function related to radiation pattern and equivalent excitation, the desired pattern can be achieved. Then, with the help of the pre-trained SISO sinc -1 -ANN, the static excitation coefficient, switch-on duration and starting time are acquired. Simulation results of different types of desired TMA patterns are provided to verify the superiority, effectiveness and efficiency of the proposed approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2023.3303464</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0034-3401</orcidid><orcidid>https://orcid.org/0000-0001-6662-5781</orcidid><orcidid>https://orcid.org/0000-0003-4146-9916</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2023-10, Vol.71 (10), p.1-1 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_ieee_primary_10217162 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amplitude modulation Antenna arrays array synthesis Artificial neural network Artificial neural networks Coders Decoding Equivalence Excitation focused beampattern Harmonic analysis Neural networks Optimization Optimization techniques Phased arrays shaped beampattern SISO (control systems) Switches Synthesis time-modulated antenna array |
title | Effective Artificial Neural Network Framework for Time-Modulated Arrays Synthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A05%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Artificial%20Neural%20Network%20Framework%20for%20Time-Modulated%20Arrays%20Synthesis&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Hei,%20Yong%20Qiang&rft.date=2023-10-01&rft.volume=71&rft.issue=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2023.3303464&rft_dat=%3Cproquest_ieee_%3E2873585032%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-6b429ecaed5c980766e98ecb683e5e3c1bef7f1f81a7e10edcff046b676053123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2873585032&rft_id=info:pmid/&rft_ieee_id=10217162&rfr_iscdi=true |