Loading…

CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks

The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliabili...

Full description

Saved in:
Bibliographic Details
Main Authors: Gaillard, Guillaume, Pham, Congduc
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1298
container_issue
container_start_page 1293
container_title
container_volume
creator Gaillard, Guillaume
Pham, Congduc
description The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.
doi_str_mv 10.1109/ISCC58397.2023.10218282
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10218282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10218282</ieee_id><sourcerecordid>10218282</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2022-c8bfbe7f20c10e671ccd0450856d2efcbee28932033b6b54c78f943cf946b4b63</originalsourceid><addsrcrecordid>eNo1T9tKxDAUjILguu4fCOYHWk9O2ibxrVRXF8oKXp6XJj3djdZGmkXZv7d4eZlhYGaYYexSQCoEmKvVU1XlWhqVIqBMBaDQqPGILYwyWuYgATKNx2yGRYaJktqcsrMYXwFA56hmrK7Kdc3r8Nhc8yr0vY8-DLz8DL5tBkfcHvia_HZnw8hrH_c0-GHLu0nd0BDpJzk59l9hfIvn7KRr-kiLP56zl-Xtc3Wf1A93q6qsk900ExOnbWdJdQhOABVKONdClk-Lihapc5YItZEIUtrC5plTujOZdBMUNrOFnLOL315PRJuP0b8342Hz_15-A6bSTfE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</title><source>IEEE Xplore All Conference Series</source><creator>Gaillard, Guillaume ; Pham, Congduc</creator><creatorcontrib>Gaillard, Guillaume ; Pham, Congduc</creatorcontrib><description>The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.</description><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9798350300482</identifier><identifier>DOI: 10.1109/ISCC58397.2023.10218282</identifier><language>eng</language><publisher>IEEE</publisher><subject>Carrier-Sense ; Channel Access ; Collision avoidance ; Collisions ; Computers ; Dense Networks ; Energy consumption ; Feature extraction ; Listen-Before-Talk ; LoRa ; LoRaSim ; Solid modeling</subject><ispartof>2023 IEEE Symposium on Computers and Communications (ISCC), 2023, p.1293-1298</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10218282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10218282$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gaillard, Guillaume</creatorcontrib><creatorcontrib>Pham, Congduc</creatorcontrib><title>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</title><title>2023 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.</description><subject>Carrier-Sense</subject><subject>Channel Access</subject><subject>Collision avoidance</subject><subject>Collisions</subject><subject>Computers</subject><subject>Dense Networks</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Listen-Before-Talk</subject><subject>LoRa</subject><subject>LoRaSim</subject><subject>Solid modeling</subject><issn>2642-7389</issn><isbn>9798350300482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1T9tKxDAUjILguu4fCOYHWk9O2ibxrVRXF8oKXp6XJj3djdZGmkXZv7d4eZlhYGaYYexSQCoEmKvVU1XlWhqVIqBMBaDQqPGILYwyWuYgATKNx2yGRYaJktqcsrMYXwFA56hmrK7Kdc3r8Nhc8yr0vY8-DLz8DL5tBkfcHvia_HZnw8hrH_c0-GHLu0nd0BDpJzk59l9hfIvn7KRr-kiLP56zl-Xtc3Wf1A93q6qsk900ExOnbWdJdQhOABVKONdClk-Lihapc5YItZEIUtrC5plTujOZdBMUNrOFnLOL315PRJuP0b8342Hz_15-A6bSTfE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Gaillard, Guillaume</creator><creator>Pham, Congduc</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2023</creationdate><title>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</title><author>Gaillard, Guillaume ; Pham, Congduc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2022-c8bfbe7f20c10e671ccd0450856d2efcbee28932033b6b54c78f943cf946b4b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carrier-Sense</topic><topic>Channel Access</topic><topic>Collision avoidance</topic><topic>Collisions</topic><topic>Computers</topic><topic>Dense Networks</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Listen-Before-Talk</topic><topic>LoRa</topic><topic>LoRaSim</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaillard, Guillaume</creatorcontrib><creatorcontrib>Pham, Congduc</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaillard, Guillaume</au><au>Pham, Congduc</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</atitle><btitle>2023 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2023</date><risdate>2023</risdate><spage>1293</spage><epage>1298</epage><pages>1293-1298</pages><eissn>2642-7389</eissn><eisbn>9798350300482</eisbn><abstract>The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.</abstract><pub>IEEE</pub><doi>10.1109/ISCC58397.2023.10218282</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-7389
ispartof 2023 IEEE Symposium on Computers and Communications (ISCC), 2023, p.1293-1298
issn 2642-7389
language eng
recordid cdi_ieee_primary_10218282
source IEEE Xplore All Conference Series
subjects Carrier-Sense
Channel Access
Collision avoidance
Collisions
Computers
Dense Networks
Energy consumption
Feature extraction
Listen-Before-Talk
LoRa
LoRaSim
Solid modeling
title CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CANL%20LoRa:%20Collision%20Avoidance%20by%20Neighbor%20Listening%20for%20Dense%20LoRa%20Networks&rft.btitle=2023%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Gaillard,%20Guillaume&rft.date=2023&rft.spage=1293&rft.epage=1298&rft.pages=1293-1298&rft.eissn=2642-7389&rft_id=info:doi/10.1109/ISCC58397.2023.10218282&rft.eisbn=9798350300482&rft_dat=%3Cieee_CHZPO%3E10218282%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h2022-c8bfbe7f20c10e671ccd0450856d2efcbee28932033b6b54c78f943cf946b4b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10218282&rfr_iscdi=true