Loading…
CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks
The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliabili...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1298 |
container_issue | |
container_start_page | 1293 |
container_title | |
container_volume | |
creator | Gaillard, Guillaume Pham, Congduc |
description | The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level. |
doi_str_mv | 10.1109/ISCC58397.2023.10218282 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10218282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10218282</ieee_id><sourcerecordid>10218282</sourcerecordid><originalsourceid>FETCH-LOGICAL-h2022-c8bfbe7f20c10e671ccd0450856d2efcbee28932033b6b54c78f943cf946b4b63</originalsourceid><addsrcrecordid>eNo1T9tKxDAUjILguu4fCOYHWk9O2ibxrVRXF8oKXp6XJj3djdZGmkXZv7d4eZlhYGaYYexSQCoEmKvVU1XlWhqVIqBMBaDQqPGILYwyWuYgATKNx2yGRYaJktqcsrMYXwFA56hmrK7Kdc3r8Nhc8yr0vY8-DLz8DL5tBkfcHvia_HZnw8hrH_c0-GHLu0nd0BDpJzk59l9hfIvn7KRr-kiLP56zl-Xtc3Wf1A93q6qsk900ExOnbWdJdQhOABVKONdClk-Lihapc5YItZEIUtrC5plTujOZdBMUNrOFnLOL315PRJuP0b8342Hz_15-A6bSTfE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</title><source>IEEE Xplore All Conference Series</source><creator>Gaillard, Guillaume ; Pham, Congduc</creator><creatorcontrib>Gaillard, Guillaume ; Pham, Congduc</creatorcontrib><description>The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.</description><identifier>EISSN: 2642-7389</identifier><identifier>EISBN: 9798350300482</identifier><identifier>DOI: 10.1109/ISCC58397.2023.10218282</identifier><language>eng</language><publisher>IEEE</publisher><subject>Carrier-Sense ; Channel Access ; Collision avoidance ; Collisions ; Computers ; Dense Networks ; Energy consumption ; Feature extraction ; Listen-Before-Talk ; LoRa ; LoRaSim ; Solid modeling</subject><ispartof>2023 IEEE Symposium on Computers and Communications (ISCC), 2023, p.1293-1298</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10218282$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10218282$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gaillard, Guillaume</creatorcontrib><creatorcontrib>Pham, Congduc</creatorcontrib><title>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</title><title>2023 IEEE Symposium on Computers and Communications (ISCC)</title><addtitle>ISCC</addtitle><description>The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.</description><subject>Carrier-Sense</subject><subject>Channel Access</subject><subject>Collision avoidance</subject><subject>Collisions</subject><subject>Computers</subject><subject>Dense Networks</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Listen-Before-Talk</subject><subject>LoRa</subject><subject>LoRaSim</subject><subject>Solid modeling</subject><issn>2642-7389</issn><isbn>9798350300482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1T9tKxDAUjILguu4fCOYHWk9O2ibxrVRXF8oKXp6XJj3djdZGmkXZv7d4eZlhYGaYYexSQCoEmKvVU1XlWhqVIqBMBaDQqPGILYwyWuYgATKNx2yGRYaJktqcsrMYXwFA56hmrK7Kdc3r8Nhc8yr0vY8-DLz8DL5tBkfcHvia_HZnw8hrH_c0-GHLu0nd0BDpJzk59l9hfIvn7KRr-kiLP56zl-Xtc3Wf1A93q6qsk900ExOnbWdJdQhOABVKONdClk-Lihapc5YItZEIUtrC5plTujOZdBMUNrOFnLOL315PRJuP0b8342Hz_15-A6bSTfE</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Gaillard, Guillaume</creator><creator>Pham, Congduc</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2023</creationdate><title>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</title><author>Gaillard, Guillaume ; Pham, Congduc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h2022-c8bfbe7f20c10e671ccd0450856d2efcbee28932033b6b54c78f943cf946b4b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carrier-Sense</topic><topic>Channel Access</topic><topic>Collision avoidance</topic><topic>Collisions</topic><topic>Computers</topic><topic>Dense Networks</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Listen-Before-Talk</topic><topic>LoRa</topic><topic>LoRaSim</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaillard, Guillaume</creatorcontrib><creatorcontrib>Pham, Congduc</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gaillard, Guillaume</au><au>Pham, Congduc</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks</atitle><btitle>2023 IEEE Symposium on Computers and Communications (ISCC)</btitle><stitle>ISCC</stitle><date>2023</date><risdate>2023</risdate><spage>1293</spage><epage>1298</epage><pages>1293-1298</pages><eissn>2642-7389</eissn><eisbn>9798350300482</eisbn><abstract>The current medium access in LoRa, involving strategies very similar to early ALOHA systems, does not scale for future denser LoRa networks, subject to many collisions. Semtech's Channel Activity Detection (CAD) feature enables to implement a carrier sense (CS) in LoRa WANs, but its unreliability at short distance dramatically decreases its efficiency for classical CS strategies. We present CANL, a novel LoRa channel access approach based on an asynchronous collision avoidance (CA) mechanism and operating without the CAD procedure. Extensive simulations using an extended LoRaSim confirm the performance of CANL in a wide range of configurations. The results are promising and show that the proposed CA approach can greatly increase the delivery ratio in dense LoRa networks compared to a classical CS strategy while keeping the energy consumption at a reasonable level.</abstract><pub>IEEE</pub><doi>10.1109/ISCC58397.2023.10218282</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2642-7389 |
ispartof | 2023 IEEE Symposium on Computers and Communications (ISCC), 2023, p.1293-1298 |
issn | 2642-7389 |
language | eng |
recordid | cdi_ieee_primary_10218282 |
source | IEEE Xplore All Conference Series |
subjects | Carrier-Sense Channel Access Collision avoidance Collisions Computers Dense Networks Energy consumption Feature extraction Listen-Before-Talk LoRa LoRaSim Solid modeling |
title | CANL LoRa: Collision Avoidance by Neighbor Listening for Dense LoRa Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CANL%20LoRa:%20Collision%20Avoidance%20by%20Neighbor%20Listening%20for%20Dense%20LoRa%20Networks&rft.btitle=2023%20IEEE%20Symposium%20on%20Computers%20and%20Communications%20(ISCC)&rft.au=Gaillard,%20Guillaume&rft.date=2023&rft.spage=1293&rft.epage=1298&rft.pages=1293-1298&rft.eissn=2642-7389&rft_id=info:doi/10.1109/ISCC58397.2023.10218282&rft.eisbn=9798350300482&rft_dat=%3Cieee_CHZPO%3E10218282%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h2022-c8bfbe7f20c10e671ccd0450856d2efcbee28932033b6b54c78f943cf946b4b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10218282&rfr_iscdi=true |