Loading…

Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks

Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource alloc...

Full description

Saved in:
Bibliographic Details
Main Authors: Guo, Jianmeng, Zhou, Huan, Zhao, Liang, Chang, Wei, Jiang, Tingyao
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Guo, Jianmeng
Zhou, Huan
Zhao, Liang
Chang, Wei
Jiang, Tingyao
description Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.
doi_str_mv 10.1109/INFOCOMWKSHPS57453.2023.10225799
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10225799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225799</ieee_id><sourcerecordid>10225799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-9466f6803dbcda3b7fee84667dfdd2366d4338e2d3f013da2ca7ac58a530962f3</originalsourceid><addsrcrecordid>eNo1kF1PwjAYhauJiYj8Ay966c2w7bu26yVZQIjIjPPjkpT1LVbHRraB4d-LQW_Ok5w8OReHkFvOhpwzczdbTLI0e3x_yKdPudSxhKFgAoacCSG1MWfkiislYxMLzc9JTyQAEZOJviSDtv1kjIHgXIPukXpWFVh1YY-Ra45ZUVs5mo_SaGVbdPQZ23rXFEhHZVkXtgv1yci8L2vrQrWmedfYDtcHGir6hh-h2JW2oWO3RprWm-2u-5UW2H3XzVd7TS68LVsc_LFPXifjl3QazbP7WTqaR4Fz00UmVsqrhIFbFc7CSnvE5Nhp550ToJSLARIUDjzj4KworLaFTKwEZpTw0Cc3p92AiMttEza2OSz_D4IflQpfHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</title><source>IEEE Xplore All Conference Series</source><creator>Guo, Jianmeng ; Zhou, Huan ; Zhao, Liang ; Chang, Wei ; Jiang, Tingyao</creator><creatorcontrib>Guo, Jianmeng ; Zhou, Huan ; Zhao, Liang ; Chang, Wei ; Jiang, Tingyao</creatorcontrib><description>Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.</description><identifier>EISSN: 2833-0587</identifier><identifier>EISBN: 1665494271</identifier><identifier>EISBN: 9781665494274</identifier><identifier>DOI: 10.1109/INFOCOMWKSHPS57453.2023.10225799</identifier><language>eng</language><publisher>IEEE</publisher><subject>contract theory ; Costs ; Minimization ; offloading strategy ; Programming ; resource allocation ; Resource management ; Road side unit ; SAC ; Simulation ; Task analysis ; VEC</subject><ispartof>IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10225799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Jianmeng</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Jiang, Tingyao</creatorcontrib><title>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</title><title>IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)</title><addtitle>INFOCOMWKSHPS</addtitle><description>Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.</description><subject>contract theory</subject><subject>Costs</subject><subject>Minimization</subject><subject>offloading strategy</subject><subject>Programming</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Road side unit</subject><subject>SAC</subject><subject>Simulation</subject><subject>Task analysis</subject><subject>VEC</subject><issn>2833-0587</issn><isbn>1665494271</isbn><isbn>9781665494274</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kF1PwjAYhauJiYj8Ay966c2w7bu26yVZQIjIjPPjkpT1LVbHRraB4d-LQW_Ok5w8OReHkFvOhpwzczdbTLI0e3x_yKdPudSxhKFgAoacCSG1MWfkiislYxMLzc9JTyQAEZOJviSDtv1kjIHgXIPukXpWFVh1YY-Ra45ZUVs5mo_SaGVbdPQZ23rXFEhHZVkXtgv1yci8L2vrQrWmedfYDtcHGir6hh-h2JW2oWO3RprWm-2u-5UW2H3XzVd7TS68LVsc_LFPXifjl3QazbP7WTqaR4Fz00UmVsqrhIFbFc7CSnvE5Nhp550ToJSLARIUDjzj4KworLaFTKwEZpTw0Cc3p92AiMttEza2OSz_D4IflQpfHg</recordid><startdate>20230520</startdate><enddate>20230520</enddate><creator>Guo, Jianmeng</creator><creator>Zhou, Huan</creator><creator>Zhao, Liang</creator><creator>Chang, Wei</creator><creator>Jiang, Tingyao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230520</creationdate><title>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</title><author>Guo, Jianmeng ; Zhou, Huan ; Zhao, Liang ; Chang, Wei ; Jiang, Tingyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-9466f6803dbcda3b7fee84667dfdd2366d4338e2d3f013da2ca7ac58a530962f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>contract theory</topic><topic>Costs</topic><topic>Minimization</topic><topic>offloading strategy</topic><topic>Programming</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Road side unit</topic><topic>SAC</topic><topic>Simulation</topic><topic>Task analysis</topic><topic>VEC</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianmeng</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Jiang, Tingyao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Jianmeng</au><au>Zhou, Huan</au><au>Zhao, Liang</au><au>Chang, Wei</au><au>Jiang, Tingyao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</atitle><btitle>IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)</btitle><stitle>INFOCOMWKSHPS</stitle><date>2023-05-20</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2833-0587</eissn><eisbn>1665494271</eisbn><eisbn>9781665494274</eisbn><abstract>Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.</abstract><pub>IEEE</pub><doi>10.1109/INFOCOMWKSHPS57453.2023.10225799</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2833-0587
ispartof IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2023, p.1-6
issn 2833-0587
language eng
recordid cdi_ieee_primary_10225799
source IEEE Xplore All Conference Series
subjects contract theory
Costs
Minimization
offloading strategy
Programming
resource allocation
Resource management
Road side unit
SAC
Simulation
Task analysis
VEC
title Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incentive-driven%20and%20SAC-based%20Resource%20Allocation%20and%20Offloading%20Strategy%20in%20Vehicular%20Edge%20Computing%20Networks&rft.btitle=IEEE%20INFOCOM%202023%20-%20IEEE%20Conference%20on%20Computer%20Communications%20Workshops%20(INFOCOM%20WKSHPS)&rft.au=Guo,%20Jianmeng&rft.date=2023-05-20&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2833-0587&rft_id=info:doi/10.1109/INFOCOMWKSHPS57453.2023.10225799&rft.eisbn=1665494271&rft.eisbn_list=9781665494274&rft_dat=%3Cieee_CHZPO%3E10225799%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-9466f6803dbcda3b7fee84667dfdd2366d4338e2d3f013da2ca7ac58a530962f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10225799&rfr_iscdi=true