Loading…
Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks
Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource alloc...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Guo, Jianmeng Zhou, Huan Zhao, Liang Chang, Wei Jiang, Tingyao |
description | Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods. |
doi_str_mv | 10.1109/INFOCOMWKSHPS57453.2023.10225799 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10225799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10225799</ieee_id><sourcerecordid>10225799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-9466f6803dbcda3b7fee84667dfdd2366d4338e2d3f013da2ca7ac58a530962f3</originalsourceid><addsrcrecordid>eNo1kF1PwjAYhauJiYj8Ay966c2w7bu26yVZQIjIjPPjkpT1LVbHRraB4d-LQW_Ok5w8OReHkFvOhpwzczdbTLI0e3x_yKdPudSxhKFgAoacCSG1MWfkiislYxMLzc9JTyQAEZOJviSDtv1kjIHgXIPukXpWFVh1YY-Ra45ZUVs5mo_SaGVbdPQZ23rXFEhHZVkXtgv1yci8L2vrQrWmedfYDtcHGir6hh-h2JW2oWO3RprWm-2u-5UW2H3XzVd7TS68LVsc_LFPXifjl3QazbP7WTqaR4Fz00UmVsqrhIFbFc7CSnvE5Nhp550ToJSLARIUDjzj4KworLaFTKwEZpTw0Cc3p92AiMttEza2OSz_D4IflQpfHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</title><source>IEEE Xplore All Conference Series</source><creator>Guo, Jianmeng ; Zhou, Huan ; Zhao, Liang ; Chang, Wei ; Jiang, Tingyao</creator><creatorcontrib>Guo, Jianmeng ; Zhou, Huan ; Zhao, Liang ; Chang, Wei ; Jiang, Tingyao</creatorcontrib><description>Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.</description><identifier>EISSN: 2833-0587</identifier><identifier>EISBN: 1665494271</identifier><identifier>EISBN: 9781665494274</identifier><identifier>DOI: 10.1109/INFOCOMWKSHPS57453.2023.10225799</identifier><language>eng</language><publisher>IEEE</publisher><subject>contract theory ; Costs ; Minimization ; offloading strategy ; Programming ; resource allocation ; Resource management ; Road side unit ; SAC ; Simulation ; Task analysis ; VEC</subject><ispartof>IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2023, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10225799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10225799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guo, Jianmeng</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Jiang, Tingyao</creatorcontrib><title>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</title><title>IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)</title><addtitle>INFOCOMWKSHPS</addtitle><description>Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.</description><subject>contract theory</subject><subject>Costs</subject><subject>Minimization</subject><subject>offloading strategy</subject><subject>Programming</subject><subject>resource allocation</subject><subject>Resource management</subject><subject>Road side unit</subject><subject>SAC</subject><subject>Simulation</subject><subject>Task analysis</subject><subject>VEC</subject><issn>2833-0587</issn><isbn>1665494271</isbn><isbn>9781665494274</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kF1PwjAYhauJiYj8Ay966c2w7bu26yVZQIjIjPPjkpT1LVbHRraB4d-LQW_Ok5w8OReHkFvOhpwzczdbTLI0e3x_yKdPudSxhKFgAoacCSG1MWfkiislYxMLzc9JTyQAEZOJviSDtv1kjIHgXIPukXpWFVh1YY-Ra45ZUVs5mo_SaGVbdPQZ23rXFEhHZVkXtgv1yci8L2vrQrWmedfYDtcHGir6hh-h2JW2oWO3RprWm-2u-5UW2H3XzVd7TS68LVsc_LFPXifjl3QazbP7WTqaR4Fz00UmVsqrhIFbFc7CSnvE5Nhp550ToJSLARIUDjzj4KworLaFTKwEZpTw0Cc3p92AiMttEza2OSz_D4IflQpfHg</recordid><startdate>20230520</startdate><enddate>20230520</enddate><creator>Guo, Jianmeng</creator><creator>Zhou, Huan</creator><creator>Zhao, Liang</creator><creator>Chang, Wei</creator><creator>Jiang, Tingyao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230520</creationdate><title>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</title><author>Guo, Jianmeng ; Zhou, Huan ; Zhao, Liang ; Chang, Wei ; Jiang, Tingyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-9466f6803dbcda3b7fee84667dfdd2366d4338e2d3f013da2ca7ac58a530962f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>contract theory</topic><topic>Costs</topic><topic>Minimization</topic><topic>offloading strategy</topic><topic>Programming</topic><topic>resource allocation</topic><topic>Resource management</topic><topic>Road side unit</topic><topic>SAC</topic><topic>Simulation</topic><topic>Task analysis</topic><topic>VEC</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jianmeng</creatorcontrib><creatorcontrib>Zhou, Huan</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>Chang, Wei</creatorcontrib><creatorcontrib>Jiang, Tingyao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guo, Jianmeng</au><au>Zhou, Huan</au><au>Zhao, Liang</au><au>Chang, Wei</au><au>Jiang, Tingyao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks</atitle><btitle>IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)</btitle><stitle>INFOCOMWKSHPS</stitle><date>2023-05-20</date><risdate>2023</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><eissn>2833-0587</eissn><eisbn>1665494271</eisbn><eisbn>9781665494274</eisbn><abstract>Vehicular edge computing (VEC) networks can provide low-latency services for vehicles. However, it is a great challenge for edge nodes to satisfy the computing tasks of all vehicles during vehicle peak hours. This paper studies the joint optimization problem of offloading strategy and resource allocation in a VEC network composed of road side units (RSUs) with computing resources, vehicle users and vehicle workers. In order to alleviate the computing pressure of the RSU, we use contract theory to encourage vehicle workers to execute computing tasks. At the same time, we propose a novel algorithm based on Soft Actor-Critic (SAC) to solve the system cost minimization problem considering vehicle users' satisfaction, RSUs' cost and vehicle workers' reward. Finally, we conduct extensive simulations in different scenarios, the simulation results show that our proposed algorithm has higher performance in reducing system cost compared with other benchmark methods.</abstract><pub>IEEE</pub><doi>10.1109/INFOCOMWKSHPS57453.2023.10225799</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2833-0587 |
ispartof | IEEE INFOCOM 2023 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2023, p.1-6 |
issn | 2833-0587 |
language | eng |
recordid | cdi_ieee_primary_10225799 |
source | IEEE Xplore All Conference Series |
subjects | contract theory Costs Minimization offloading strategy Programming resource allocation Resource management Road side unit SAC Simulation Task analysis VEC |
title | Incentive-driven and SAC-based Resource Allocation and Offloading Strategy in Vehicular Edge Computing Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incentive-driven%20and%20SAC-based%20Resource%20Allocation%20and%20Offloading%20Strategy%20in%20Vehicular%20Edge%20Computing%20Networks&rft.btitle=IEEE%20INFOCOM%202023%20-%20IEEE%20Conference%20on%20Computer%20Communications%20Workshops%20(INFOCOM%20WKSHPS)&rft.au=Guo,%20Jianmeng&rft.date=2023-05-20&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.eissn=2833-0587&rft_id=info:doi/10.1109/INFOCOMWKSHPS57453.2023.10225799&rft.eisbn=1665494271&rft.eisbn_list=9781665494274&rft_dat=%3Cieee_CHZPO%3E10225799%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-9466f6803dbcda3b7fee84667dfdd2366d4338e2d3f013da2ca7ac58a530962f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10225799&rfr_iscdi=true |