Loading…

A Novel Deep Convolutional Neural Network Pooling Algorithm for Small floating objects detection

The problem of floating debris in rivers and oceans is growing. To clean floating objects on the water more effectively, IoT-based unmanned boats were chosen for autonomous cleaning. However, the strong light reflections of riverside objects on the water surface pose challenges for vision-based obje...

Full description

Saved in:
Bibliographic Details
Main Authors: Shen, Jun-Yu, Lu, Cheng-Kai, Lim, Lam Ghai
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 176
container_issue
container_start_page 175
container_title
container_volume
creator Shen, Jun-Yu
Lu, Cheng-Kai
Lim, Lam Ghai
description The problem of floating debris in rivers and oceans is growing. To clean floating objects on the water more effectively, IoT-based unmanned boats were chosen for autonomous cleaning. However, the strong light reflections of riverside objects on the water surface pose challenges for vision-based object detection systems to detect small targets. By modifying the pooling module in Spatial Pyramid Pooling and using the TS-YOLO structure to retain the original spatial pyramid advantage, we improve the accuracy of floating litter for detecting objects on rivers. In the experimental results, our proposed method was tested on Pascal VOC, FLOW, and WIDER FACE, which showed good detection capability on mAP with 2.86%, 1%, and 2.28% improvement over the original YOLOv4.
doi_str_mv 10.1109/ICCE-Taiwan58799.2023.10226754
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10226754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226754</ieee_id><sourcerecordid>10226754</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-a291955e9a709f3cb30cbe305ef33905dcf87176413a8cd27e9dc10acf0a3303</originalsourceid><addsrcrecordid>eNo10E1PAjEUheFqYiJB_oGLrtwN3rZTOndJRhQSgiayx9K5xcEyJTMF4r8Xv1bP4iTv4jB2J2AoBOD9rCwn2dLWJ9vowiAOJUg1FCDlyOj8gg3QYKE0KJkLk1-yntRGZ4Us8ms26LotACiBAAJ77G3MF_FIgT8Q7XkZm2MMh1THxga-oEP7QzrF9oO_xBjqZsPHYRPbOr3vuI8tf93ZELgP0abvMa635FLHK0pnz50bduVt6GjwZ58tHyfLcprNn59m5Xie1UJgyqxEgVoTWgPolVsrcGtSoMkrhaAr5wsjzCgXyhaukoawcgKs82CVAtVnt7_ZmohW-7be2fZz9f-J-gKWIlmg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Deep Convolutional Neural Network Pooling Algorithm for Small floating objects detection</title><source>IEEE Xplore All Conference Series</source><creator>Shen, Jun-Yu ; Lu, Cheng-Kai ; Lim, Lam Ghai</creator><creatorcontrib>Shen, Jun-Yu ; Lu, Cheng-Kai ; Lim, Lam Ghai</creatorcontrib><description>The problem of floating debris in rivers and oceans is growing. To clean floating objects on the water more effectively, IoT-based unmanned boats were chosen for autonomous cleaning. However, the strong light reflections of riverside objects on the water surface pose challenges for vision-based object detection systems to detect small targets. By modifying the pooling module in Spatial Pyramid Pooling and using the TS-YOLO structure to retain the original spatial pyramid advantage, we improve the accuracy of floating litter for detecting objects on rivers. In the experimental results, our proposed method was tested on Pascal VOC, FLOW, and WIDER FACE, which showed good detection capability on mAP with 2.86%, 1%, and 2.28% improvement over the original YOLOv4.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 9798350324174</identifier><identifier>DOI: 10.1109/ICCE-Taiwan58799.2023.10226754</identifier><language>eng</language><publisher>IEEE</publisher><subject>Boats ; Feature extraction ; neural network ; Object detection ; pooling ; Reflection ; Rivers ; Sea surface ; spatial pyramid pooling ; Surface cleaning ; YOLO</subject><ispartof>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.175-176</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Jun-Yu</creatorcontrib><creatorcontrib>Lu, Cheng-Kai</creatorcontrib><creatorcontrib>Lim, Lam Ghai</creatorcontrib><title>A Novel Deep Convolutional Neural Network Pooling Algorithm for Small floating objects detection</title><title>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</title><addtitle>ICCE-Taiwan</addtitle><description>The problem of floating debris in rivers and oceans is growing. To clean floating objects on the water more effectively, IoT-based unmanned boats were chosen for autonomous cleaning. However, the strong light reflections of riverside objects on the water surface pose challenges for vision-based object detection systems to detect small targets. By modifying the pooling module in Spatial Pyramid Pooling and using the TS-YOLO structure to retain the original spatial pyramid advantage, we improve the accuracy of floating litter for detecting objects on rivers. In the experimental results, our proposed method was tested on Pascal VOC, FLOW, and WIDER FACE, which showed good detection capability on mAP with 2.86%, 1%, and 2.28% improvement over the original YOLOv4.</description><subject>Boats</subject><subject>Feature extraction</subject><subject>neural network</subject><subject>Object detection</subject><subject>pooling</subject><subject>Reflection</subject><subject>Rivers</subject><subject>Sea surface</subject><subject>spatial pyramid pooling</subject><subject>Surface cleaning</subject><subject>YOLO</subject><issn>2575-8284</issn><isbn>9798350324174</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo10E1PAjEUheFqYiJB_oGLrtwN3rZTOndJRhQSgiayx9K5xcEyJTMF4r8Xv1bP4iTv4jB2J2AoBOD9rCwn2dLWJ9vowiAOJUg1FCDlyOj8gg3QYKE0KJkLk1-yntRGZ4Us8ms26LotACiBAAJ77G3MF_FIgT8Q7XkZm2MMh1THxga-oEP7QzrF9oO_xBjqZsPHYRPbOr3vuI8tf93ZELgP0abvMa635FLHK0pnz50bduVt6GjwZ58tHyfLcprNn59m5Xie1UJgyqxEgVoTWgPolVsrcGtSoMkrhaAr5wsjzCgXyhaukoawcgKs82CVAtVnt7_ZmohW-7be2fZz9f-J-gKWIlmg</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Shen, Jun-Yu</creator><creator>Lu, Cheng-Kai</creator><creator>Lim, Lam Ghai</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230717</creationdate><title>A Novel Deep Convolutional Neural Network Pooling Algorithm for Small floating objects detection</title><author>Shen, Jun-Yu ; Lu, Cheng-Kai ; Lim, Lam Ghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-a291955e9a709f3cb30cbe305ef33905dcf87176413a8cd27e9dc10acf0a3303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boats</topic><topic>Feature extraction</topic><topic>neural network</topic><topic>Object detection</topic><topic>pooling</topic><topic>Reflection</topic><topic>Rivers</topic><topic>Sea surface</topic><topic>spatial pyramid pooling</topic><topic>Surface cleaning</topic><topic>YOLO</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun-Yu</creatorcontrib><creatorcontrib>Lu, Cheng-Kai</creatorcontrib><creatorcontrib>Lim, Lam Ghai</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Jun-Yu</au><au>Lu, Cheng-Kai</au><au>Lim, Lam Ghai</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Deep Convolutional Neural Network Pooling Algorithm for Small floating objects detection</atitle><btitle>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</btitle><stitle>ICCE-Taiwan</stitle><date>2023-07-17</date><risdate>2023</risdate><spage>175</spage><epage>176</epage><pages>175-176</pages><eissn>2575-8284</eissn><eisbn>9798350324174</eisbn><abstract>The problem of floating debris in rivers and oceans is growing. To clean floating objects on the water more effectively, IoT-based unmanned boats were chosen for autonomous cleaning. However, the strong light reflections of riverside objects on the water surface pose challenges for vision-based object detection systems to detect small targets. By modifying the pooling module in Spatial Pyramid Pooling and using the TS-YOLO structure to retain the original spatial pyramid advantage, we improve the accuracy of floating litter for detecting objects on rivers. In the experimental results, our proposed method was tested on Pascal VOC, FLOW, and WIDER FACE, which showed good detection capability on mAP with 2.86%, 1%, and 2.28% improvement over the original YOLOv4.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan58799.2023.10226754</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8284
ispartof 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.175-176
issn 2575-8284
language eng
recordid cdi_ieee_primary_10226754
source IEEE Xplore All Conference Series
subjects Boats
Feature extraction
neural network
Object detection
pooling
Reflection
Rivers
Sea surface
spatial pyramid pooling
Surface cleaning
YOLO
title A Novel Deep Convolutional Neural Network Pooling Algorithm for Small floating objects detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Deep%20Convolutional%20Neural%20Network%20Pooling%20Algorithm%20for%20Small%20floating%20objects%20detection&rft.btitle=2023%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan%20(ICCE-Taiwan)&rft.au=Shen,%20Jun-Yu&rft.date=2023-07-17&rft.spage=175&rft.epage=176&rft.pages=175-176&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan58799.2023.10226754&rft.eisbn=9798350324174&rft_dat=%3Cieee_CHZPO%3E10226754%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-a291955e9a709f3cb30cbe305ef33905dcf87176413a8cd27e9dc10acf0a3303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10226754&rfr_iscdi=true