Loading…

Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation

In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To a...

Full description

Saved in:
Bibliographic Details
Main Authors: Yamamoto, Ami, Yumoto, Kenta, Matsuda, Takahiro, Higuchi, Junichi, Kodama, Takeshi, Ueno, Hitoshi, Shiraishi, Takashi
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 464
container_issue
container_start_page 463
container_title
container_volume
creator Yamamoto, Ami
Yumoto, Kenta
Matsuda, Takahiro
Higuchi, Junichi
Kodama, Takeshi
Ueno, Hitoshi
Shiraishi, Takashi
description In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.
doi_str_mv 10.1109/ICCE-Taiwan58799.2023.10226756
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10226756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226756</ieee_id><sourcerecordid>10226756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-d0d79b2e4b307139d626d50f5e9426d4e0f637b2789424fe2882c7b8476452033</originalsourceid><addsrcrecordid>eNo1kM1Kw0AYRUdBsNS-gYtZuUv95i8zs9QQtdCiYC3uyiT5YkbyUzJTim9vRF3dezbnwiXkhsGSMbC3qyzLk63zJ9cro61dcuBiyYDzVKv0jCystkYoEFwyLc_JjCutEsONvCSLED4BQDALwOyMvO_8GI-upRtXNr5H-tK6EjvsI91gbIaKnnxsaDZ0hxFDwIq-Yh98_5Hcux_ajq6ufUl3Q3vskOYh-s5FP_RX5KJ2bcDFX87J20O-zZ6S9fPjKrtbJ54xG5MKKm0LjrIQoJmwVcrTSkGt0MqpSYQ6Fbrg2kwsa-TG8FIXRupUKg5CzMn1r9cj4v4wTvPj1_7_DPENlUpVpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</title><source>IEEE Xplore All Conference Series</source><creator>Yamamoto, Ami ; Yumoto, Kenta ; Matsuda, Takahiro ; Higuchi, Junichi ; Kodama, Takeshi ; Ueno, Hitoshi ; Shiraishi, Takashi</creator><creatorcontrib>Yamamoto, Ami ; Yumoto, Kenta ; Matsuda, Takahiro ; Higuchi, Junichi ; Kodama, Takeshi ; Ueno, Hitoshi ; Shiraishi, Takashi</creatorcontrib><description>In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 9798350324174</identifier><identifier>DOI: 10.1109/ICCE-Taiwan58799.2023.10226756</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; compressed sensing ; Load management ; Optimization ; Sensors ; Telecommunication traffic ; traffic volume estimation ; virtual machine ; Virtual machining ; VM placement ; Volume measurement</subject><ispartof>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.463-464</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamamoto, Ami</creatorcontrib><creatorcontrib>Yumoto, Kenta</creatorcontrib><creatorcontrib>Matsuda, Takahiro</creatorcontrib><creatorcontrib>Higuchi, Junichi</creatorcontrib><creatorcontrib>Kodama, Takeshi</creatorcontrib><creatorcontrib>Ueno, Hitoshi</creatorcontrib><creatorcontrib>Shiraishi, Takashi</creatorcontrib><title>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</title><title>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</title><addtitle>ICCE-Taiwan</addtitle><description>In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.</description><subject>Cloud computing</subject><subject>compressed sensing</subject><subject>Load management</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Telecommunication traffic</subject><subject>traffic volume estimation</subject><subject>virtual machine</subject><subject>Virtual machining</subject><subject>VM placement</subject><subject>Volume measurement</subject><issn>2575-8284</issn><isbn>9798350324174</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Kw0AYRUdBsNS-gYtZuUv95i8zs9QQtdCiYC3uyiT5YkbyUzJTim9vRF3dezbnwiXkhsGSMbC3qyzLk63zJ9cro61dcuBiyYDzVKv0jCystkYoEFwyLc_JjCutEsONvCSLED4BQDALwOyMvO_8GI-upRtXNr5H-tK6EjvsI91gbIaKnnxsaDZ0hxFDwIq-Yh98_5Hcux_ajq6ufUl3Q3vskOYh-s5FP_RX5KJ2bcDFX87J20O-zZ6S9fPjKrtbJ54xG5MKKm0LjrIQoJmwVcrTSkGt0MqpSYQ6Fbrg2kwsa-TG8FIXRupUKg5CzMn1r9cj4v4wTvPj1_7_DPENlUpVpA</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Yamamoto, Ami</creator><creator>Yumoto, Kenta</creator><creator>Matsuda, Takahiro</creator><creator>Higuchi, Junichi</creator><creator>Kodama, Takeshi</creator><creator>Ueno, Hitoshi</creator><creator>Shiraishi, Takashi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230717</creationdate><title>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</title><author>Yamamoto, Ami ; Yumoto, Kenta ; Matsuda, Takahiro ; Higuchi, Junichi ; Kodama, Takeshi ; Ueno, Hitoshi ; Shiraishi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-d0d79b2e4b307139d626d50f5e9426d4e0f637b2789424fe2882c7b8476452033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>compressed sensing</topic><topic>Load management</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Telecommunication traffic</topic><topic>traffic volume estimation</topic><topic>virtual machine</topic><topic>Virtual machining</topic><topic>VM placement</topic><topic>Volume measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Ami</creatorcontrib><creatorcontrib>Yumoto, Kenta</creatorcontrib><creatorcontrib>Matsuda, Takahiro</creatorcontrib><creatorcontrib>Higuchi, Junichi</creatorcontrib><creatorcontrib>Kodama, Takeshi</creatorcontrib><creatorcontrib>Ueno, Hitoshi</creatorcontrib><creatorcontrib>Shiraishi, Takashi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamamoto, Ami</au><au>Yumoto, Kenta</au><au>Matsuda, Takahiro</au><au>Higuchi, Junichi</au><au>Kodama, Takeshi</au><au>Ueno, Hitoshi</au><au>Shiraishi, Takashi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</atitle><btitle>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</btitle><stitle>ICCE-Taiwan</stitle><date>2023-07-17</date><risdate>2023</risdate><spage>463</spage><epage>464</epage><pages>463-464</pages><eissn>2575-8284</eissn><eisbn>9798350324174</eisbn><abstract>In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan58799.2023.10226756</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8284
ispartof 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.463-464
issn 2575-8284
language eng
recordid cdi_ieee_primary_10226756
source IEEE Xplore All Conference Series
subjects Cloud computing
compressed sensing
Load management
Optimization
Sensors
Telecommunication traffic
traffic volume estimation
virtual machine
Virtual machining
VM placement
Volume measurement
title Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Virtual%20Machine%20Placement%20Method%20with%20Compressed%20Sensing-Based%20Traffic%20Volume%20Estimation&rft.btitle=2023%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan%20(ICCE-Taiwan)&rft.au=Yamamoto,%20Ami&rft.date=2023-07-17&rft.spage=463&rft.epage=464&rft.pages=463-464&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan58799.2023.10226756&rft.eisbn=9798350324174&rft_dat=%3Cieee_CHZPO%3E10226756%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-d0d79b2e4b307139d626d50f5e9426d4e0f637b2789424fe2882c7b8476452033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10226756&rfr_iscdi=true