Loading…
Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation
In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To a...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 464 |
container_issue | |
container_start_page | 463 |
container_title | |
container_volume | |
creator | Yamamoto, Ami Yumoto, Kenta Matsuda, Takahiro Higuchi, Junichi Kodama, Takeshi Ueno, Hitoshi Shiraishi, Takashi |
description | In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments. |
doi_str_mv | 10.1109/ICCE-Taiwan58799.2023.10226756 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10226756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226756</ieee_id><sourcerecordid>10226756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-d0d79b2e4b307139d626d50f5e9426d4e0f637b2789424fe2882c7b8476452033</originalsourceid><addsrcrecordid>eNo1kM1Kw0AYRUdBsNS-gYtZuUv95i8zs9QQtdCiYC3uyiT5YkbyUzJTim9vRF3dezbnwiXkhsGSMbC3qyzLk63zJ9cro61dcuBiyYDzVKv0jCystkYoEFwyLc_JjCutEsONvCSLED4BQDALwOyMvO_8GI-upRtXNr5H-tK6EjvsI91gbIaKnnxsaDZ0hxFDwIq-Yh98_5Hcux_ajq6ufUl3Q3vskOYh-s5FP_RX5KJ2bcDFX87J20O-zZ6S9fPjKrtbJ54xG5MKKm0LjrIQoJmwVcrTSkGt0MqpSYQ6Fbrg2kwsa-TG8FIXRupUKg5CzMn1r9cj4v4wTvPj1_7_DPENlUpVpA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</title><source>IEEE Xplore All Conference Series</source><creator>Yamamoto, Ami ; Yumoto, Kenta ; Matsuda, Takahiro ; Higuchi, Junichi ; Kodama, Takeshi ; Ueno, Hitoshi ; Shiraishi, Takashi</creator><creatorcontrib>Yamamoto, Ami ; Yumoto, Kenta ; Matsuda, Takahiro ; Higuchi, Junichi ; Kodama, Takeshi ; Ueno, Hitoshi ; Shiraishi, Takashi</creatorcontrib><description>In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 9798350324174</identifier><identifier>DOI: 10.1109/ICCE-Taiwan58799.2023.10226756</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cloud computing ; compressed sensing ; Load management ; Optimization ; Sensors ; Telecommunication traffic ; traffic volume estimation ; virtual machine ; Virtual machining ; VM placement ; Volume measurement</subject><ispartof>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.463-464</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yamamoto, Ami</creatorcontrib><creatorcontrib>Yumoto, Kenta</creatorcontrib><creatorcontrib>Matsuda, Takahiro</creatorcontrib><creatorcontrib>Higuchi, Junichi</creatorcontrib><creatorcontrib>Kodama, Takeshi</creatorcontrib><creatorcontrib>Ueno, Hitoshi</creatorcontrib><creatorcontrib>Shiraishi, Takashi</creatorcontrib><title>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</title><title>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</title><addtitle>ICCE-Taiwan</addtitle><description>In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.</description><subject>Cloud computing</subject><subject>compressed sensing</subject><subject>Load management</subject><subject>Optimization</subject><subject>Sensors</subject><subject>Telecommunication traffic</subject><subject>traffic volume estimation</subject><subject>virtual machine</subject><subject>Virtual machining</subject><subject>VM placement</subject><subject>Volume measurement</subject><issn>2575-8284</issn><isbn>9798350324174</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1Kw0AYRUdBsNS-gYtZuUv95i8zs9QQtdCiYC3uyiT5YkbyUzJTim9vRF3dezbnwiXkhsGSMbC3qyzLk63zJ9cro61dcuBiyYDzVKv0jCystkYoEFwyLc_JjCutEsONvCSLED4BQDALwOyMvO_8GI-upRtXNr5H-tK6EjvsI91gbIaKnnxsaDZ0hxFDwIq-Yh98_5Hcux_ajq6ufUl3Q3vskOYh-s5FP_RX5KJ2bcDFX87J20O-zZ6S9fPjKrtbJ54xG5MKKm0LjrIQoJmwVcrTSkGt0MqpSYQ6Fbrg2kwsa-TG8FIXRupUKg5CzMn1r9cj4v4wTvPj1_7_DPENlUpVpA</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Yamamoto, Ami</creator><creator>Yumoto, Kenta</creator><creator>Matsuda, Takahiro</creator><creator>Higuchi, Junichi</creator><creator>Kodama, Takeshi</creator><creator>Ueno, Hitoshi</creator><creator>Shiraishi, Takashi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230717</creationdate><title>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</title><author>Yamamoto, Ami ; Yumoto, Kenta ; Matsuda, Takahiro ; Higuchi, Junichi ; Kodama, Takeshi ; Ueno, Hitoshi ; Shiraishi, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-d0d79b2e4b307139d626d50f5e9426d4e0f637b2789424fe2882c7b8476452033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cloud computing</topic><topic>compressed sensing</topic><topic>Load management</topic><topic>Optimization</topic><topic>Sensors</topic><topic>Telecommunication traffic</topic><topic>traffic volume estimation</topic><topic>virtual machine</topic><topic>Virtual machining</topic><topic>VM placement</topic><topic>Volume measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Ami</creatorcontrib><creatorcontrib>Yumoto, Kenta</creatorcontrib><creatorcontrib>Matsuda, Takahiro</creatorcontrib><creatorcontrib>Higuchi, Junichi</creatorcontrib><creatorcontrib>Kodama, Takeshi</creatorcontrib><creatorcontrib>Ueno, Hitoshi</creatorcontrib><creatorcontrib>Shiraishi, Takashi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yamamoto, Ami</au><au>Yumoto, Kenta</au><au>Matsuda, Takahiro</au><au>Higuchi, Junichi</au><au>Kodama, Takeshi</au><au>Ueno, Hitoshi</au><au>Shiraishi, Takashi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation</atitle><btitle>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</btitle><stitle>ICCE-Taiwan</stitle><date>2023-07-17</date><risdate>2023</risdate><spage>463</spage><epage>464</epage><pages>463-464</pages><eissn>2575-8284</eissn><eisbn>9798350324174</eisbn><abstract>In a cloud computing environment, a virtual machine placement (VMP) problem is considered for traffic load balancing, where each VM is placed on a physical host according to traffic loads in the physical hosts. In particular, VM is referred to as a node and a pair of nodes is considered a flow. To achieve load balancing, identifying flows that transfer heavy traffic volumes is necessary. We propose a VMP method with compressed sensing (CS)-based traffic volume estimation. In the proposed method, all flow traffic volumes are estimated by CS from the traffic volumes that nodes transmit and receive. VMs are placed according to the estimated flow traffic volumes by solving a combinatorial optimization problem. We validate the proposed method via simulation experiments.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan58799.2023.10226756</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2575-8284 |
ispartof | 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.463-464 |
issn | 2575-8284 |
language | eng |
recordid | cdi_ieee_primary_10226756 |
source | IEEE Xplore All Conference Series |
subjects | Cloud computing compressed sensing Load management Optimization Sensors Telecommunication traffic traffic volume estimation virtual machine Virtual machining VM placement Volume measurement |
title | Virtual Machine Placement Method with Compressed Sensing-Based Traffic Volume Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Virtual%20Machine%20Placement%20Method%20with%20Compressed%20Sensing-Based%20Traffic%20Volume%20Estimation&rft.btitle=2023%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan%20(ICCE-Taiwan)&rft.au=Yamamoto,%20Ami&rft.date=2023-07-17&rft.spage=463&rft.epage=464&rft.pages=463-464&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan58799.2023.10226756&rft.eisbn=9798350324174&rft_dat=%3Cieee_CHZPO%3E10226756%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-d0d79b2e4b307139d626d50f5e9426d4e0f637b2789424fe2882c7b8476452033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10226756&rfr_iscdi=true |