Loading…

Proficiency-level Estimation Using Heterogeneous Features via Label Dequantized CCA

A proficiency-level estimation method using heterogeneous features by supervised fractional-order embedding multi-view canonical correlation analysis via ordinal label dequantization (SFEMCCA-OLD) is presented in this paper. The proposed method constructs a common latent space by SFEMCCA-OLD, and es...

Full description

Saved in:
Bibliographic Details
Main Authors: Seino, Tatsuki, Saito, Naoki, Ogawa, Takahiro, Asamizu, Satoshi, Haseyama, Miki
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 814
container_issue
container_start_page 813
container_title
container_volume
creator Seino, Tatsuki
Saito, Naoki
Ogawa, Takahiro
Asamizu, Satoshi
Haseyama, Miki
description A proficiency-level estimation method using heterogeneous features by supervised fractional-order embedding multi-view canonical correlation analysis via ordinal label dequantization (SFEMCCA-OLD) is presented in this paper. The proposed method constructs a common latent space by SFEMCCA-OLD, and estimates proficiency-level using projected features to the common latent space. Then we can utilize new features that have the powerful representation ability since SFEMCCA-OLD enables the construction of the common latent space without dimensionality limitation. Consequently, the performance improvement of the proficiency-level estimation becomes feasible.
doi_str_mv 10.1109/ICCE-Taiwan58799.2023.10226921
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10226921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10226921</ieee_id><sourcerecordid>10226921</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-777a2295ba71e67098fa87fee18cfb4c83b28d79994733a294637f8cbcb9fa763</originalsourceid><addsrcrecordid>eNo1kE1Lw0AURUdBsNT8Axezcpc6H0nevGWJrS0UFGzX5SV9U0Zqopm0Un99A-rqru7hnivEg1YTrRU-Lstylq4pfFOTO0CcGGXsRCtjCjT6SiQI6GyurMk0ZNdiZHLIU2dcdiuSGN-VUlajUhpH4u21a32oAzf1OT3wiQ9yFvvwQX1oG7mJodnLBffctXtuuD1GOWfqjx1HeQokV1QNjSf-OlLThx_eybKc3okbT4fIyV-OxWY-W5eLdPXyvCynqzRojX0KAGQM5hWB5gIUOk8OPLN2ta-y2tnKuN3ghxlYSwazwoJ3dVVX6AkKOxb3v9zAzNvPbljdnbf_P9gL9W5U-g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Proficiency-level Estimation Using Heterogeneous Features via Label Dequantized CCA</title><source>IEEE Xplore All Conference Series</source><creator>Seino, Tatsuki ; Saito, Naoki ; Ogawa, Takahiro ; Asamizu, Satoshi ; Haseyama, Miki</creator><creatorcontrib>Seino, Tatsuki ; Saito, Naoki ; Ogawa, Takahiro ; Asamizu, Satoshi ; Haseyama, Miki</creatorcontrib><description>A proficiency-level estimation method using heterogeneous features by supervised fractional-order embedding multi-view canonical correlation analysis via ordinal label dequantization (SFEMCCA-OLD) is presented in this paper. The proposed method constructs a common latent space by SFEMCCA-OLD, and estimates proficiency-level using projected features to the common latent space. Then we can utilize new features that have the powerful representation ability since SFEMCCA-OLD enables the construction of the common latent space without dimensionality limitation. Consequently, the performance improvement of the proficiency-level estimation becomes feasible.</description><identifier>EISSN: 2575-8284</identifier><identifier>EISBN: 9798350324174</identifier><identifier>DOI: 10.1109/ICCE-Taiwan58799.2023.10226921</identifier><language>eng</language><publisher>IEEE</publisher><subject>canonical correlation analysis ; Consumer electronics ; Correlation ; Estimation ; ordinal label dequantization ; Proficiency-level estimation</subject><ispartof>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.813-814</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10226921$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10226921$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seino, Tatsuki</creatorcontrib><creatorcontrib>Saito, Naoki</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Asamizu, Satoshi</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><title>Proficiency-level Estimation Using Heterogeneous Features via Label Dequantized CCA</title><title>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</title><addtitle>ICCE-Taiwan</addtitle><description>A proficiency-level estimation method using heterogeneous features by supervised fractional-order embedding multi-view canonical correlation analysis via ordinal label dequantization (SFEMCCA-OLD) is presented in this paper. The proposed method constructs a common latent space by SFEMCCA-OLD, and estimates proficiency-level using projected features to the common latent space. Then we can utilize new features that have the powerful representation ability since SFEMCCA-OLD enables the construction of the common latent space without dimensionality limitation. Consequently, the performance improvement of the proficiency-level estimation becomes feasible.</description><subject>canonical correlation analysis</subject><subject>Consumer electronics</subject><subject>Correlation</subject><subject>Estimation</subject><subject>ordinal label dequantization</subject><subject>Proficiency-level estimation</subject><issn>2575-8284</issn><isbn>9798350324174</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1Lw0AURUdBsNT8Axezcpc6H0nevGWJrS0UFGzX5SV9U0Zqopm0Un99A-rqru7hnivEg1YTrRU-Lstylq4pfFOTO0CcGGXsRCtjCjT6SiQI6GyurMk0ZNdiZHLIU2dcdiuSGN-VUlajUhpH4u21a32oAzf1OT3wiQ9yFvvwQX1oG7mJodnLBffctXtuuD1GOWfqjx1HeQokV1QNjSf-OlLThx_eybKc3okbT4fIyV-OxWY-W5eLdPXyvCynqzRojX0KAGQM5hWB5gIUOk8OPLN2ta-y2tnKuN3ghxlYSwazwoJ3dVVX6AkKOxb3v9zAzNvPbljdnbf_P9gL9W5U-g</recordid><startdate>20230717</startdate><enddate>20230717</enddate><creator>Seino, Tatsuki</creator><creator>Saito, Naoki</creator><creator>Ogawa, Takahiro</creator><creator>Asamizu, Satoshi</creator><creator>Haseyama, Miki</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230717</creationdate><title>Proficiency-level Estimation Using Heterogeneous Features via Label Dequantized CCA</title><author>Seino, Tatsuki ; Saito, Naoki ; Ogawa, Takahiro ; Asamizu, Satoshi ; Haseyama, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-777a2295ba71e67098fa87fee18cfb4c83b28d79994733a294637f8cbcb9fa763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>canonical correlation analysis</topic><topic>Consumer electronics</topic><topic>Correlation</topic><topic>Estimation</topic><topic>ordinal label dequantization</topic><topic>Proficiency-level estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Seino, Tatsuki</creatorcontrib><creatorcontrib>Saito, Naoki</creatorcontrib><creatorcontrib>Ogawa, Takahiro</creatorcontrib><creatorcontrib>Asamizu, Satoshi</creatorcontrib><creatorcontrib>Haseyama, Miki</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seino, Tatsuki</au><au>Saito, Naoki</au><au>Ogawa, Takahiro</au><au>Asamizu, Satoshi</au><au>Haseyama, Miki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Proficiency-level Estimation Using Heterogeneous Features via Label Dequantized CCA</atitle><btitle>2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)</btitle><stitle>ICCE-Taiwan</stitle><date>2023-07-17</date><risdate>2023</risdate><spage>813</spage><epage>814</epage><pages>813-814</pages><eissn>2575-8284</eissn><eisbn>9798350324174</eisbn><abstract>A proficiency-level estimation method using heterogeneous features by supervised fractional-order embedding multi-view canonical correlation analysis via ordinal label dequantization (SFEMCCA-OLD) is presented in this paper. The proposed method constructs a common latent space by SFEMCCA-OLD, and estimates proficiency-level using projected features to the common latent space. Then we can utilize new features that have the powerful representation ability since SFEMCCA-OLD enables the construction of the common latent space without dimensionality limitation. Consequently, the performance improvement of the proficiency-level estimation becomes feasible.</abstract><pub>IEEE</pub><doi>10.1109/ICCE-Taiwan58799.2023.10226921</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2575-8284
ispartof 2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2023, p.813-814
issn 2575-8284
language eng
recordid cdi_ieee_primary_10226921
source IEEE Xplore All Conference Series
subjects canonical correlation analysis
Consumer electronics
Correlation
Estimation
ordinal label dequantization
Proficiency-level estimation
title Proficiency-level Estimation Using Heterogeneous Features via Label Dequantized CCA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Proficiency-level%20Estimation%20Using%20Heterogeneous%20Features%20via%20Label%20Dequantized%20CCA&rft.btitle=2023%20International%20Conference%20on%20Consumer%20Electronics%20-%20Taiwan%20(ICCE-Taiwan)&rft.au=Seino,%20Tatsuki&rft.date=2023-07-17&rft.spage=813&rft.epage=814&rft.pages=813-814&rft.eissn=2575-8284&rft_id=info:doi/10.1109/ICCE-Taiwan58799.2023.10226921&rft.eisbn=9798350324174&rft_dat=%3Cieee_CHZPO%3E10226921%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-777a2295ba71e67098fa87fee18cfb4c83b28d79994733a294637f8cbcb9fa763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10226921&rfr_iscdi=true