Loading…

Early-to-Late Prediction of DCE-MRI Contrast-Enhanced Images in Using Generative Adversarial Networks

We consider the problem of predicting early-to-late Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) in breast cancer sequences. This is approached with conditional generative adversarial networks that synthesize the late response image given the early response. We propose a novel loss...

Full description

Saved in:
Bibliographic Details
Main Authors: Fonnegra, Ruben D., Liliana Hernandez, Maria, Caicedo, Juan C., Diaz, Gloria M.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Fonnegra, Ruben D.
Liliana Hernandez, Maria
Caicedo, Juan C.
Diaz, Gloria M.
description We consider the problem of predicting early-to-late Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) in breast cancer sequences. This is approached with conditional generative adversarial networks that synthesize the late response image given the early response. We propose a novel loss function to improve the ability of GAN models to learn the relevant temporal tissue dynamics under this setting, as well as a clinically relevant metric to assess performance. Our experiments show that the proposed strategy predicts accurate responses and could serve as a solution to implement fast diagnostic protocols.
doi_str_mv 10.1109/ISBI53787.2023.10230509
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10230509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10230509</ieee_id><sourcerecordid>10230509</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-bc22517200442a758a3decfdd821f1eefec08a0540a61b33a06273ea3d87f7f83</originalsourceid><addsrcrecordid>eNo1kMtOwzAURA0SElXpHyDhH3DxM3aWJYQSqTwEdF3dJjfF0DrItor691QCZjFnMzqLIeRK8KkQvLxuXm8ao6yzU8mlmopjccPLEzIprRNFYbRVxqlTMhKlNsxpI8_JJKUPfozVWnE9IlhD3B5YHtgCMtLniJ1vsx8CHXp6W9Xs4aWh1RByhJRZHd4htNjRZgcbTNQHukw-bOgcA0bIfo901u0xJogetvQR8_cQP9MFOethm3DyxzFZ3tVv1T1bPM2barZgXnKd2bqV0ggrOddagjUOVIdt33VOil4g9thyB9xoDoVYKwW8kFbhceVsb3unxuTy1-sRcfUV_Q7iYfX_jPoB8WRYBw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Early-to-Late Prediction of DCE-MRI Contrast-Enhanced Images in Using Generative Adversarial Networks</title><source>IEEE Xplore All Conference Series</source><creator>Fonnegra, Ruben D. ; Liliana Hernandez, Maria ; Caicedo, Juan C. ; Diaz, Gloria M.</creator><creatorcontrib>Fonnegra, Ruben D. ; Liliana Hernandez, Maria ; Caicedo, Juan C. ; Diaz, Gloria M.</creatorcontrib><description>We consider the problem of predicting early-to-late Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) in breast cancer sequences. This is approached with conditional generative adversarial networks that synthesize the late response image given the early response. We propose a novel loss function to improve the ability of GAN models to learn the relevant temporal tissue dynamics under this setting, as well as a clinically relevant metric to assess performance. Our experiments show that the proposed strategy predicts accurate responses and could serve as a solution to implement fast diagnostic protocols.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781665473583</identifier><identifier>EISBN: 1665473584</identifier><identifier>DOI: 10.1109/ISBI53787.2023.10230509</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Biological system modeling ; Breast cancer ; Breast DCE-MRI ; Generative adversarial networks ; Image synthesis ; late response ; Magnetic resonance imaging ; Measurement ; Protocols</subject><ispartof>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10230509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10230509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fonnegra, Ruben D.</creatorcontrib><creatorcontrib>Liliana Hernandez, Maria</creatorcontrib><creatorcontrib>Caicedo, Juan C.</creatorcontrib><creatorcontrib>Diaz, Gloria M.</creatorcontrib><title>Early-to-Late Prediction of DCE-MRI Contrast-Enhanced Images in Using Generative Adversarial Networks</title><title>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>We consider the problem of predicting early-to-late Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) in breast cancer sequences. This is approached with conditional generative adversarial networks that synthesize the late response image given the early response. We propose a novel loss function to improve the ability of GAN models to learn the relevant temporal tissue dynamics under this setting, as well as a clinically relevant metric to assess performance. Our experiments show that the proposed strategy predicts accurate responses and could serve as a solution to implement fast diagnostic protocols.</description><subject>Analytical models</subject><subject>Biological system modeling</subject><subject>Breast cancer</subject><subject>Breast DCE-MRI</subject><subject>Generative adversarial networks</subject><subject>Image synthesis</subject><subject>late response</subject><subject>Magnetic resonance imaging</subject><subject>Measurement</subject><subject>Protocols</subject><issn>1945-8452</issn><isbn>9781665473583</isbn><isbn>1665473584</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURA0SElXpHyDhH3DxM3aWJYQSqTwEdF3dJjfF0DrItor691QCZjFnMzqLIeRK8KkQvLxuXm8ao6yzU8mlmopjccPLEzIprRNFYbRVxqlTMhKlNsxpI8_JJKUPfozVWnE9IlhD3B5YHtgCMtLniJ1vsx8CHXp6W9Xs4aWh1RByhJRZHd4htNjRZgcbTNQHukw-bOgcA0bIfo901u0xJogetvQR8_cQP9MFOethm3DyxzFZ3tVv1T1bPM2barZgXnKd2bqV0ggrOddagjUOVIdt33VOil4g9thyB9xoDoVYKwW8kFbhceVsb3unxuTy1-sRcfUV_Q7iYfX_jPoB8WRYBw</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Fonnegra, Ruben D.</creator><creator>Liliana Hernandez, Maria</creator><creator>Caicedo, Juan C.</creator><creator>Diaz, Gloria M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230418</creationdate><title>Early-to-Late Prediction of DCE-MRI Contrast-Enhanced Images in Using Generative Adversarial Networks</title><author>Fonnegra, Ruben D. ; Liliana Hernandez, Maria ; Caicedo, Juan C. ; Diaz, Gloria M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-bc22517200442a758a3decfdd821f1eefec08a0540a61b33a06273ea3d87f7f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical models</topic><topic>Biological system modeling</topic><topic>Breast cancer</topic><topic>Breast DCE-MRI</topic><topic>Generative adversarial networks</topic><topic>Image synthesis</topic><topic>late response</topic><topic>Magnetic resonance imaging</topic><topic>Measurement</topic><topic>Protocols</topic><toplevel>online_resources</toplevel><creatorcontrib>Fonnegra, Ruben D.</creatorcontrib><creatorcontrib>Liliana Hernandez, Maria</creatorcontrib><creatorcontrib>Caicedo, Juan C.</creatorcontrib><creatorcontrib>Diaz, Gloria M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fonnegra, Ruben D.</au><au>Liliana Hernandez, Maria</au><au>Caicedo, Juan C.</au><au>Diaz, Gloria M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Early-to-Late Prediction of DCE-MRI Contrast-Enhanced Images in Using Generative Adversarial Networks</atitle><btitle>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2023-04-18</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1945-8452</eissn><eisbn>9781665473583</eisbn><eisbn>1665473584</eisbn><abstract>We consider the problem of predicting early-to-late Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) in breast cancer sequences. This is approached with conditional generative adversarial networks that synthesize the late response image given the early response. We propose a novel loss function to improve the ability of GAN models to learn the relevant temporal tissue dynamics under this setting, as well as a clinically relevant metric to assess performance. Our experiments show that the proposed strategy predicts accurate responses and could serve as a solution to implement fast diagnostic protocols.</abstract><pub>IEEE</pub><doi>10.1109/ISBI53787.2023.10230509</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-5
issn 1945-8452
language eng
recordid cdi_ieee_primary_10230509
source IEEE Xplore All Conference Series
subjects Analytical models
Biological system modeling
Breast cancer
Breast DCE-MRI
Generative adversarial networks
Image synthesis
late response
Magnetic resonance imaging
Measurement
Protocols
title Early-to-Late Prediction of DCE-MRI Contrast-Enhanced Images in Using Generative Adversarial Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Early-to-Late%20Prediction%20of%20DCE-MRI%20Contrast-Enhanced%20Images%20in%20Using%20Generative%20Adversarial%20Networks&rft.btitle=2023%20IEEE%2020th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Fonnegra,%20Ruben%20D.&rft.date=2023-04-18&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI53787.2023.10230509&rft.eisbn=9781665473583&rft.eisbn_list=1665473584&rft_dat=%3Cieee_CHZPO%3E10230509%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-bc22517200442a758a3decfdd821f1eefec08a0540a61b33a06273ea3d87f7f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10230509&rfr_iscdi=true