Loading…

Diabetic Retinopathy Detection Using 3D OCT Features

If untreated, diabetic retinopathy (DR) can result in a severe health complication, leading to visual loss. This study focuses on developing a computer-assisted diagnostic (CAD) system that utilizes 3D optical coherence tomography (OCT) images for detecting DR. To begin with, the 3D OCT images are s...

Full description

Saved in:
Bibliographic Details
Main Authors: Sharafeldeen, Ahmed, Elgafi, Mahmoud, Elnakib, Ahmed, Mahmoud, Ali, Elgarayhi, Ahmed, Alghamdi, Norah S., Sallah, Mohammed, El-Baz, Ayman
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Sharafeldeen, Ahmed
Elgafi, Mahmoud
Elnakib, Ahmed
Mahmoud, Ali
Elgarayhi, Ahmed
Alghamdi, Norah S.
Sallah, Mohammed
El-Baz, Ayman
description If untreated, diabetic retinopathy (DR) can result in a severe health complication, leading to visual loss. This study focuses on developing a computer-assisted diagnostic (CAD) system that utilizes 3D optical coherence tomography (OCT) images for detecting DR. To begin with, the 3D OCT images are subjected to a process where the retinal layers are isolated from the input. Following this, from each individual retinal layer, two key 3D characteristics, namely thickness and first-order reflectivity, are computed. Eventually, classification is carried out using backpropagation neural networks. Utilizing 10-folds cross-validation on 188 cases, experiments validate the benefits of the developed system over competing approaches, with an accuracy of 94.74% ± 5.55%. These results demonstrate the method's potential for DR detection utilizing OCT images.
doi_str_mv 10.1109/ISBI53787.2023.10230785
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10230785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10230785</ieee_id><sourcerecordid>10230785</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-dff90406cd18ec0a0336b36cbc2533c4d9cf52ea0e40ec4cfff382537b311703</originalsourceid><addsrcrecordid>eNo1j8FKxDAURaMgOIz9A8H8QOtLXtKkS20dLQwMaF0PafqiEe0MbVzM31tQ7-LcxYELl7EbAYUQUN22L_etRmNNIUFiIRaAsfqMZZWxoiy1MqgtnrOVqJTOrdLykmXz_AFLjFIIasVUE11PKXr-vHA8HF16P_GGEvkUDyN_neP4xrHhu7rjG3Lpe6L5il0E9zlT9tdr1m0euvop3-4e2_pum0cJKuVDCBUoKP0gLHlwgFj2WPreS43o1VD5oCU5IAXklQ8hoF2U6VEIA7hm17-zkYj2xyl-uem0__-JP2EERik</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Diabetic Retinopathy Detection Using 3D OCT Features</title><source>IEEE Xplore All Conference Series</source><creator>Sharafeldeen, Ahmed ; Elgafi, Mahmoud ; Elnakib, Ahmed ; Mahmoud, Ali ; Elgarayhi, Ahmed ; Alghamdi, Norah S. ; Sallah, Mohammed ; El-Baz, Ayman</creator><creatorcontrib>Sharafeldeen, Ahmed ; Elgafi, Mahmoud ; Elnakib, Ahmed ; Mahmoud, Ali ; Elgarayhi, Ahmed ; Alghamdi, Norah S. ; Sallah, Mohammed ; El-Baz, Ayman</creatorcontrib><description>If untreated, diabetic retinopathy (DR) can result in a severe health complication, leading to visual loss. This study focuses on developing a computer-assisted diagnostic (CAD) system that utilizes 3D optical coherence tomography (OCT) images for detecting DR. To begin with, the 3D OCT images are subjected to a process where the retinal layers are isolated from the input. Following this, from each individual retinal layer, two key 3D characteristics, namely thickness and first-order reflectivity, are computed. Eventually, classification is carried out using backpropagation neural networks. Utilizing 10-folds cross-validation on 188 cases, experiments validate the benefits of the developed system over competing approaches, with an accuracy of 94.74% ± 5.55%. These results demonstrate the method's potential for DR detection utilizing OCT images.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781665473583</identifier><identifier>EISBN: 1665473584</identifier><identifier>DOI: 10.1109/ISBI53787.2023.10230785</identifier><language>eng</language><publisher>IEEE</publisher><subject>CAD System ; Diabetic retinopathy ; Neural Network ; Neural networks ; Optical Coherence Tomograph ; Optical coherence tomography ; Optical losses ; Reflectivity ; Thickness ; Three-dimensional displays ; Visualization</subject><ispartof>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10230785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10230785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sharafeldeen, Ahmed</creatorcontrib><creatorcontrib>Elgafi, Mahmoud</creatorcontrib><creatorcontrib>Elnakib, Ahmed</creatorcontrib><creatorcontrib>Mahmoud, Ali</creatorcontrib><creatorcontrib>Elgarayhi, Ahmed</creatorcontrib><creatorcontrib>Alghamdi, Norah S.</creatorcontrib><creatorcontrib>Sallah, Mohammed</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><title>Diabetic Retinopathy Detection Using 3D OCT Features</title><title>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>If untreated, diabetic retinopathy (DR) can result in a severe health complication, leading to visual loss. This study focuses on developing a computer-assisted diagnostic (CAD) system that utilizes 3D optical coherence tomography (OCT) images for detecting DR. To begin with, the 3D OCT images are subjected to a process where the retinal layers are isolated from the input. Following this, from each individual retinal layer, two key 3D characteristics, namely thickness and first-order reflectivity, are computed. Eventually, classification is carried out using backpropagation neural networks. Utilizing 10-folds cross-validation on 188 cases, experiments validate the benefits of the developed system over competing approaches, with an accuracy of 94.74% ± 5.55%. These results demonstrate the method's potential for DR detection utilizing OCT images.</description><subject>CAD System</subject><subject>Diabetic retinopathy</subject><subject>Neural Network</subject><subject>Neural networks</subject><subject>Optical Coherence Tomograph</subject><subject>Optical coherence tomography</subject><subject>Optical losses</subject><subject>Reflectivity</subject><subject>Thickness</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>1945-8452</issn><isbn>9781665473583</isbn><isbn>1665473584</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8FKxDAURaMgOIz9A8H8QOtLXtKkS20dLQwMaF0PafqiEe0MbVzM31tQ7-LcxYELl7EbAYUQUN22L_etRmNNIUFiIRaAsfqMZZWxoiy1MqgtnrOVqJTOrdLykmXz_AFLjFIIasVUE11PKXr-vHA8HF16P_GGEvkUDyN_neP4xrHhu7rjG3Lpe6L5il0E9zlT9tdr1m0euvop3-4e2_pum0cJKuVDCBUoKP0gLHlwgFj2WPreS43o1VD5oCU5IAXklQ8hoF2U6VEIA7hm17-zkYj2xyl-uem0__-JP2EERik</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Sharafeldeen, Ahmed</creator><creator>Elgafi, Mahmoud</creator><creator>Elnakib, Ahmed</creator><creator>Mahmoud, Ali</creator><creator>Elgarayhi, Ahmed</creator><creator>Alghamdi, Norah S.</creator><creator>Sallah, Mohammed</creator><creator>El-Baz, Ayman</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230418</creationdate><title>Diabetic Retinopathy Detection Using 3D OCT Features</title><author>Sharafeldeen, Ahmed ; Elgafi, Mahmoud ; Elnakib, Ahmed ; Mahmoud, Ali ; Elgarayhi, Ahmed ; Alghamdi, Norah S. ; Sallah, Mohammed ; El-Baz, Ayman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-dff90406cd18ec0a0336b36cbc2533c4d9cf52ea0e40ec4cfff382537b311703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CAD System</topic><topic>Diabetic retinopathy</topic><topic>Neural Network</topic><topic>Neural networks</topic><topic>Optical Coherence Tomograph</topic><topic>Optical coherence tomography</topic><topic>Optical losses</topic><topic>Reflectivity</topic><topic>Thickness</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharafeldeen, Ahmed</creatorcontrib><creatorcontrib>Elgafi, Mahmoud</creatorcontrib><creatorcontrib>Elnakib, Ahmed</creatorcontrib><creatorcontrib>Mahmoud, Ali</creatorcontrib><creatorcontrib>Elgarayhi, Ahmed</creatorcontrib><creatorcontrib>Alghamdi, Norah S.</creatorcontrib><creatorcontrib>Sallah, Mohammed</creatorcontrib><creatorcontrib>El-Baz, Ayman</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharafeldeen, Ahmed</au><au>Elgafi, Mahmoud</au><au>Elnakib, Ahmed</au><au>Mahmoud, Ali</au><au>Elgarayhi, Ahmed</au><au>Alghamdi, Norah S.</au><au>Sallah, Mohammed</au><au>El-Baz, Ayman</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Diabetic Retinopathy Detection Using 3D OCT Features</atitle><btitle>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2023-04-18</date><risdate>2023</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>1945-8452</eissn><eisbn>9781665473583</eisbn><eisbn>1665473584</eisbn><abstract>If untreated, diabetic retinopathy (DR) can result in a severe health complication, leading to visual loss. This study focuses on developing a computer-assisted diagnostic (CAD) system that utilizes 3D optical coherence tomography (OCT) images for detecting DR. To begin with, the 3D OCT images are subjected to a process where the retinal layers are isolated from the input. Following this, from each individual retinal layer, two key 3D characteristics, namely thickness and first-order reflectivity, are computed. Eventually, classification is carried out using backpropagation neural networks. Utilizing 10-folds cross-validation on 188 cases, experiments validate the benefits of the developed system over competing approaches, with an accuracy of 94.74% ± 5.55%. These results demonstrate the method's potential for DR detection utilizing OCT images.</abstract><pub>IEEE</pub><doi>10.1109/ISBI53787.2023.10230785</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-4
issn 1945-8452
language eng
recordid cdi_ieee_primary_10230785
source IEEE Xplore All Conference Series
subjects CAD System
Diabetic retinopathy
Neural Network
Neural networks
Optical Coherence Tomograph
Optical coherence tomography
Optical losses
Reflectivity
Thickness
Three-dimensional displays
Visualization
title Diabetic Retinopathy Detection Using 3D OCT Features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Diabetic%20Retinopathy%20Detection%20Using%203D%20OCT%20Features&rft.btitle=2023%20IEEE%2020th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Sharafeldeen,%20Ahmed&rft.date=2023-04-18&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI53787.2023.10230785&rft.eisbn=9781665473583&rft.eisbn_list=1665473584&rft_dat=%3Cieee_CHZPO%3E10230785%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-dff90406cd18ec0a0336b36cbc2533c4d9cf52ea0e40ec4cfff382537b311703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10230785&rfr_iscdi=true