Loading…
Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning
Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and acti...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Baram, Alon Ovadia, Oded Zurakhov, Grigoriy Giyras, Raja Turkel, Eli Greenspan, Hayit |
description | Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem. |
doi_str_mv | 10.1109/ISBI53787.2023.10230793 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10230793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10230793</ieee_id><sourcerecordid>10230793</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-909ffc99661a2a03d791c16d27a6bb6f94795ecf7ddc8ca80dabfe2fc596bbe63</originalsourceid><addsrcrecordid>eNo1kM1OAjEUhauJiQR5AxP7AoP973Q5giIJCQvBLbnTucUaGEinLObtHaKexbk5Obnf4hDyxNmUc-aelx8vSy1taaeCCTnlgzHr5A2ZOFtyY7SyUpfyloy4U7oolRb3ZNJ132yQVUoyNSJ-jhl9ju2eVi3k07Gn6zO2Q-5obGn-QrrCkGmVU7wc6WcECnSTIrT7ywES3R5ygu7URk-rlKCn2-7KmiOeh0dIV9IDuQtw6HDyd8dk-_a6mb0Xq_ViOatWRRRM5cIxF4J3zhgOAphsrOOem0ZYMHVtglPWafTBNo0vPZSsgTqgCF67oUcjx-TxlxsRcXdO8Qip3_3vIn8Ay5ZYzQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Baram, Alon ; Ovadia, Oded ; Zurakhov, Grigoriy ; Giyras, Raja ; Turkel, Eli ; Greenspan, Hayit</creator><creatorcontrib>Baram, Alon ; Ovadia, Oded ; Zurakhov, Grigoriy ; Giyras, Raja ; Turkel, Eli ; Greenspan, Hayit</creatorcontrib><description>Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781665473583</identifier><identifier>EISBN: 1665473584</identifier><identifier>DOI: 10.1109/ISBI53787.2023.10230793</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrhythmia ; Biological system modeling ; Deep learning ; Heart ; Heart beat ; Real-time systems ; Robustness</subject><ispartof>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10230793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10230793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baram, Alon</creatorcontrib><creatorcontrib>Ovadia, Oded</creatorcontrib><creatorcontrib>Zurakhov, Grigoriy</creatorcontrib><creatorcontrib>Giyras, Raja</creatorcontrib><creatorcontrib>Turkel, Eli</creatorcontrib><creatorcontrib>Greenspan, Hayit</creatorcontrib><title>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</title><title>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.</description><subject>Arrhythmia</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>Heart</subject><subject>Heart beat</subject><subject>Real-time systems</subject><subject>Robustness</subject><issn>1945-8452</issn><isbn>9781665473583</isbn><isbn>1665473584</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OAjEUhauJiQR5AxP7AoP973Q5giIJCQvBLbnTucUaGEinLObtHaKexbk5Obnf4hDyxNmUc-aelx8vSy1taaeCCTnlgzHr5A2ZOFtyY7SyUpfyloy4U7oolRb3ZNJ132yQVUoyNSJ-jhl9ju2eVi3k07Gn6zO2Q-5obGn-QrrCkGmVU7wc6WcECnSTIrT7ywES3R5ygu7URk-rlKCn2-7KmiOeh0dIV9IDuQtw6HDyd8dk-_a6mb0Xq_ViOatWRRRM5cIxF4J3zhgOAphsrOOem0ZYMHVtglPWafTBNo0vPZSsgTqgCF67oUcjx-TxlxsRcXdO8Qip3_3vIn8Ay5ZYzQ</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Baram, Alon</creator><creator>Ovadia, Oded</creator><creator>Zurakhov, Grigoriy</creator><creator>Giyras, Raja</creator><creator>Turkel, Eli</creator><creator>Greenspan, Hayit</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230418</creationdate><title>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</title><author>Baram, Alon ; Ovadia, Oded ; Zurakhov, Grigoriy ; Giyras, Raja ; Turkel, Eli ; Greenspan, Hayit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-909ffc99661a2a03d791c16d27a6bb6f94795ecf7ddc8ca80dabfe2fc596bbe63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrhythmia</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>Heart</topic><topic>Heart beat</topic><topic>Real-time systems</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Baram, Alon</creatorcontrib><creatorcontrib>Ovadia, Oded</creatorcontrib><creatorcontrib>Zurakhov, Grigoriy</creatorcontrib><creatorcontrib>Giyras, Raja</creatorcontrib><creatorcontrib>Turkel, Eli</creatorcontrib><creatorcontrib>Greenspan, Hayit</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baram, Alon</au><au>Ovadia, Oded</au><au>Zurakhov, Grigoriy</au><au>Giyras, Raja</au><au>Turkel, Eli</au><au>Greenspan, Hayit</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</atitle><btitle>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2023-04-18</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1945-8452</eissn><eisbn>9781665473583</eisbn><eisbn>1665473584</eisbn><abstract>Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.</abstract><pub>IEEE</pub><doi>10.1109/ISBI53787.2023.10230793</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1945-8452 |
ispartof | 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-5 |
issn | 1945-8452 |
language | eng |
recordid | cdi_ieee_primary_10230793 |
source | IEEE Xplore All Conference Series |
subjects | Arrhythmia Biological system modeling Deep learning Heart Heart beat Real-time systems Robustness |
title | Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Anatomy%20Openings%20in%20the%20Left%20Atrium%20Via%20a%20Triangular%20Ultrasonic%20Array%20Using%20Deep%20Learning&rft.btitle=2023%20IEEE%2020th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Baram,%20Alon&rft.date=2023-04-18&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI53787.2023.10230793&rft.eisbn=9781665473583&rft.eisbn_list=1665473584&rft_dat=%3Cieee_CHZPO%3E10230793%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-909ffc99661a2a03d791c16d27a6bb6f94795ecf7ddc8ca80dabfe2fc596bbe63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10230793&rfr_iscdi=true |