Loading…

Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning

Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and acti...

Full description

Saved in:
Bibliographic Details
Main Authors: Baram, Alon, Ovadia, Oded, Zurakhov, Grigoriy, Giyras, Raja, Turkel, Eli, Greenspan, Hayit
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Baram, Alon
Ovadia, Oded
Zurakhov, Grigoriy
Giyras, Raja
Turkel, Eli
Greenspan, Hayit
description Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.
doi_str_mv 10.1109/ISBI53787.2023.10230793
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10230793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10230793</ieee_id><sourcerecordid>10230793</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-909ffc99661a2a03d791c16d27a6bb6f94795ecf7ddc8ca80dabfe2fc596bbe63</originalsourceid><addsrcrecordid>eNo1kM1OAjEUhauJiQR5AxP7AoP973Q5giIJCQvBLbnTucUaGEinLObtHaKexbk5Obnf4hDyxNmUc-aelx8vSy1taaeCCTnlgzHr5A2ZOFtyY7SyUpfyloy4U7oolRb3ZNJ132yQVUoyNSJ-jhl9ju2eVi3k07Gn6zO2Q-5obGn-QrrCkGmVU7wc6WcECnSTIrT7ywES3R5ygu7URk-rlKCn2-7KmiOeh0dIV9IDuQtw6HDyd8dk-_a6mb0Xq_ViOatWRRRM5cIxF4J3zhgOAphsrOOem0ZYMHVtglPWafTBNo0vPZSsgTqgCF67oUcjx-TxlxsRcXdO8Qip3_3vIn8Ay5ZYzQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Baram, Alon ; Ovadia, Oded ; Zurakhov, Grigoriy ; Giyras, Raja ; Turkel, Eli ; Greenspan, Hayit</creator><creatorcontrib>Baram, Alon ; Ovadia, Oded ; Zurakhov, Grigoriy ; Giyras, Raja ; Turkel, Eli ; Greenspan, Hayit</creatorcontrib><description>Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.</description><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781665473583</identifier><identifier>EISBN: 1665473584</identifier><identifier>DOI: 10.1109/ISBI53787.2023.10230793</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrhythmia ; Biological system modeling ; Deep learning ; Heart ; Heart beat ; Real-time systems ; Robustness</subject><ispartof>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10230793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10230793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baram, Alon</creatorcontrib><creatorcontrib>Ovadia, Oded</creatorcontrib><creatorcontrib>Zurakhov, Grigoriy</creatorcontrib><creatorcontrib>Giyras, Raja</creatorcontrib><creatorcontrib>Turkel, Eli</creatorcontrib><creatorcontrib>Greenspan, Hayit</creatorcontrib><title>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</title><title>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.</description><subject>Arrhythmia</subject><subject>Biological system modeling</subject><subject>Deep learning</subject><subject>Heart</subject><subject>Heart beat</subject><subject>Real-time systems</subject><subject>Robustness</subject><issn>1945-8452</issn><isbn>9781665473583</isbn><isbn>1665473584</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OAjEUhauJiQR5AxP7AoP973Q5giIJCQvBLbnTucUaGEinLObtHaKexbk5Obnf4hDyxNmUc-aelx8vSy1taaeCCTnlgzHr5A2ZOFtyY7SyUpfyloy4U7oolRb3ZNJ132yQVUoyNSJ-jhl9ju2eVi3k07Gn6zO2Q-5obGn-QrrCkGmVU7wc6WcECnSTIrT7ywES3R5ygu7URk-rlKCn2-7KmiOeh0dIV9IDuQtw6HDyd8dk-_a6mb0Xq_ViOatWRRRM5cIxF4J3zhgOAphsrOOem0ZYMHVtglPWafTBNo0vPZSsgTqgCF67oUcjx-TxlxsRcXdO8Qip3_3vIn8Ay5ZYzQ</recordid><startdate>20230418</startdate><enddate>20230418</enddate><creator>Baram, Alon</creator><creator>Ovadia, Oded</creator><creator>Zurakhov, Grigoriy</creator><creator>Giyras, Raja</creator><creator>Turkel, Eli</creator><creator>Greenspan, Hayit</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230418</creationdate><title>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</title><author>Baram, Alon ; Ovadia, Oded ; Zurakhov, Grigoriy ; Giyras, Raja ; Turkel, Eli ; Greenspan, Hayit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-909ffc99661a2a03d791c16d27a6bb6f94795ecf7ddc8ca80dabfe2fc596bbe63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arrhythmia</topic><topic>Biological system modeling</topic><topic>Deep learning</topic><topic>Heart</topic><topic>Heart beat</topic><topic>Real-time systems</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Baram, Alon</creatorcontrib><creatorcontrib>Ovadia, Oded</creatorcontrib><creatorcontrib>Zurakhov, Grigoriy</creatorcontrib><creatorcontrib>Giyras, Raja</creatorcontrib><creatorcontrib>Turkel, Eli</creatorcontrib><creatorcontrib>Greenspan, Hayit</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baram, Alon</au><au>Ovadia, Oded</au><au>Zurakhov, Grigoriy</au><au>Giyras, Raja</au><au>Turkel, Eli</au><au>Greenspan, Hayit</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning</atitle><btitle>2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2023-04-18</date><risdate>2023</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><eissn>1945-8452</eissn><eisbn>9781665473583</eisbn><eisbn>1665473584</eisbn><abstract>Cardiac arrhythmia is the clinical term for the set of diseases wherein the heart beats irregularly. A widespread treatment is ablating the arrhythmia maintaining regions, which requires electro-anatomical mapping. A proposed sparse ultrasonic/electrode array can potentially map the anatomy and activity in real time. However, a limited amount of elements causes a difficulty in mapping anatomical openings. We propose a deep learning model to increase the mapping capacity. We empirically show that our proposed method is able to accurately detect openings in a heart chamber anatomy simulation. We further improve the accuracy of the model by adding Fourier-based pre-processing steps. Finally, we demonstrate the robustness of the model to changes in the physical parameters of the problem.</abstract><pub>IEEE</pub><doi>10.1109/ISBI53787.2023.10230793</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1945-8452
ispartof 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), 2023, p.1-5
issn 1945-8452
language eng
recordid cdi_ieee_primary_10230793
source IEEE Xplore All Conference Series
subjects Arrhythmia
Biological system modeling
Deep learning
Heart
Heart beat
Real-time systems
Robustness
title Detecting Anatomy Openings in the Left Atrium Via a Triangular Ultrasonic Array Using Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A00%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detecting%20Anatomy%20Openings%20in%20the%20Left%20Atrium%20Via%20a%20Triangular%20Ultrasonic%20Array%20Using%20Deep%20Learning&rft.btitle=2023%20IEEE%2020th%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Baram,%20Alon&rft.date=2023-04-18&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.eissn=1945-8452&rft_id=info:doi/10.1109/ISBI53787.2023.10230793&rft.eisbn=9781665473583&rft.eisbn_list=1665473584&rft_dat=%3Cieee_CHZPO%3E10230793%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-909ffc99661a2a03d791c16d27a6bb6f94795ecf7ddc8ca80dabfe2fc596bbe63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10230793&rfr_iscdi=true