Loading…

Inverse Design of Microresonators Using Machine Learning

The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities a...

Full description

Saved in:
Bibliographic Details
Main Authors: Pal, Arghadeep, Ghosh, Alekhya, Zhang, Shuangyou, Bi, Toby, Del'Haye, Pascal
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1
container_issue
container_start_page 1
container_title
container_volume
creator Pal, Arghadeep
Ghosh, Alekhya
Zhang, Shuangyou
Bi, Toby
Del'Haye, Pascal
description The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,
doi_str_mv 10.1109/CLEO/Europe-EQEC57999.2023.10232825
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10232825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10232825</ieee_id><sourcerecordid>10232825</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-5c70257a5040587441f5793ba9b74036b675a853fb0eaf34f41997c5a9dadaa23</originalsourceid><addsrcrecordid>eNo1j01Lw0AURUdBsNT8AxfZS9I3H68zbykx2kJKEey6vKSTOqJJmamC_96AurkXzuJyrhB3EkopgRZVU28X9WccT76on-sKLRGVCpQu5RTKKbwQGVlyGkEbJMJLMVNO60ICqmuRpfQGAFpJaa2ZCbcevnxMPn_wKRyHfOzzTejiGH0aBz6PMeW7FIZjvuHuNQw-bzzHYQI34qrn9-Szv56L3WP9Uq2KZvu0ru6bIkhJ5wI7CwotIxhAZ42R_eSsW6bWGtDLdmmRHeq-Bc-9Nr2RRLZDpgMfmJWei9vf3eC9359i-OD4vf8_q38ASRZL1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inverse Design of Microresonators Using Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Pal, Arghadeep ; Ghosh, Alekhya ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creator><creatorcontrib>Pal, Arghadeep ; Ghosh, Alekhya ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creatorcontrib><description>The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,</description><identifier>EISSN: 2833-1052</identifier><identifier>EISBN: 9798350345995</identifier><identifier>DOI: 10.1109/CLEO/Europe-EQEC57999.2023.10232825</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dispersion ; Europe ; Geometry ; Integrated optics ; Machine learning ; Microcavities ; Optical device fabrication</subject><ispartof>2023 Conference on Lasers and Electro-Optics Europe &amp; European Quantum Electronics Conference (CLEO/Europe-EQEC), 2023, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10232825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10232825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><title>Inverse Design of Microresonators Using Machine Learning</title><title>2023 Conference on Lasers and Electro-Optics Europe &amp; European Quantum Electronics Conference (CLEO/Europe-EQEC)</title><addtitle>CLEO/EUROPE-EQEC</addtitle><description>The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,</description><subject>Dispersion</subject><subject>Europe</subject><subject>Geometry</subject><subject>Integrated optics</subject><subject>Machine learning</subject><subject>Microcavities</subject><subject>Optical device fabrication</subject><issn>2833-1052</issn><isbn>9798350345995</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AURUdBsNT8AxfZS9I3H68zbykx2kJKEey6vKSTOqJJmamC_96AurkXzuJyrhB3EkopgRZVU28X9WccT76on-sKLRGVCpQu5RTKKbwQGVlyGkEbJMJLMVNO60ICqmuRpfQGAFpJaa2ZCbcevnxMPn_wKRyHfOzzTejiGH0aBz6PMeW7FIZjvuHuNQw-bzzHYQI34qrn9-Szv56L3WP9Uq2KZvu0ru6bIkhJ5wI7CwotIxhAZ42R_eSsW6bWGtDLdmmRHeq-Bc-9Nr2RRLZDpgMfmJWei9vf3eC9359i-OD4vf8_q38ASRZL1Q</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Pal, Arghadeep</creator><creator>Ghosh, Alekhya</creator><creator>Zhang, Shuangyou</creator><creator>Bi, Toby</creator><creator>Del'Haye, Pascal</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230626</creationdate><title>Inverse Design of Microresonators Using Machine Learning</title><author>Pal, Arghadeep ; Ghosh, Alekhya ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-5c70257a5040587441f5793ba9b74036b675a853fb0eaf34f41997c5a9dadaa23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dispersion</topic><topic>Europe</topic><topic>Geometry</topic><topic>Integrated optics</topic><topic>Machine learning</topic><topic>Microcavities</topic><topic>Optical device fabrication</topic><toplevel>online_resources</toplevel><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pal, Arghadeep</au><au>Ghosh, Alekhya</au><au>Zhang, Shuangyou</au><au>Bi, Toby</au><au>Del'Haye, Pascal</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inverse Design of Microresonators Using Machine Learning</atitle><btitle>2023 Conference on Lasers and Electro-Optics Europe &amp; European Quantum Electronics Conference (CLEO/Europe-EQEC)</btitle><stitle>CLEO/EUROPE-EQEC</stitle><date>2023-06-26</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2833-1052</eissn><eisbn>9798350345995</eisbn><abstract>The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,</abstract><pub>IEEE</pub><doi>10.1109/CLEO/Europe-EQEC57999.2023.10232825</doi><tpages>1</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2833-1052
ispartof 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2023, p.1-1
issn 2833-1052
language eng
recordid cdi_ieee_primary_10232825
source IEEE Xplore All Conference Series
subjects Dispersion
Europe
Geometry
Integrated optics
Machine learning
Microcavities
Optical device fabrication
title Inverse Design of Microresonators Using Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inverse%20Design%20of%20Microresonators%20Using%20Machine%20Learning&rft.btitle=2023%20Conference%20on%20Lasers%20and%20Electro-Optics%20Europe%20&%20European%20Quantum%20Electronics%20Conference%20(CLEO/Europe-EQEC)&rft.au=Pal,%20Arghadeep&rft.date=2023-06-26&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2833-1052&rft_id=info:doi/10.1109/CLEO/Europe-EQEC57999.2023.10232825&rft.eisbn=9798350345995&rft_dat=%3Cieee_CHZPO%3E10232825%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-5c70257a5040587441f5793ba9b74036b675a853fb0eaf34f41997c5a9dadaa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10232825&rfr_iscdi=true