Loading…
Inverse Design of Microresonators Using Machine Learning
The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities a...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Pal, Arghadeep Ghosh, Alekhya Zhang, Shuangyou Bi, Toby Del'Haye, Pascal |
description | The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as, |
doi_str_mv | 10.1109/CLEO/Europe-EQEC57999.2023.10232825 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10232825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10232825</ieee_id><sourcerecordid>10232825</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-5c70257a5040587441f5793ba9b74036b675a853fb0eaf34f41997c5a9dadaa23</originalsourceid><addsrcrecordid>eNo1j01Lw0AURUdBsNT8AxfZS9I3H68zbykx2kJKEey6vKSTOqJJmamC_96AurkXzuJyrhB3EkopgRZVU28X9WccT76on-sKLRGVCpQu5RTKKbwQGVlyGkEbJMJLMVNO60ICqmuRpfQGAFpJaa2ZCbcevnxMPn_wKRyHfOzzTejiGH0aBz6PMeW7FIZjvuHuNQw-bzzHYQI34qrn9-Szv56L3WP9Uq2KZvu0ru6bIkhJ5wI7CwotIxhAZ42R_eSsW6bWGtDLdmmRHeq-Bc-9Nr2RRLZDpgMfmJWei9vf3eC9359i-OD4vf8_q38ASRZL1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Inverse Design of Microresonators Using Machine Learning</title><source>IEEE Xplore All Conference Series</source><creator>Pal, Arghadeep ; Ghosh, Alekhya ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creator><creatorcontrib>Pal, Arghadeep ; Ghosh, Alekhya ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</creatorcontrib><description>The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,</description><identifier>EISSN: 2833-1052</identifier><identifier>EISBN: 9798350345995</identifier><identifier>DOI: 10.1109/CLEO/Europe-EQEC57999.2023.10232825</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dispersion ; Europe ; Geometry ; Integrated optics ; Machine learning ; Microcavities ; Optical device fabrication</subject><ispartof>2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2023, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10232825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10232825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><title>Inverse Design of Microresonators Using Machine Learning</title><title>2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)</title><addtitle>CLEO/EUROPE-EQEC</addtitle><description>The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,</description><subject>Dispersion</subject><subject>Europe</subject><subject>Geometry</subject><subject>Integrated optics</subject><subject>Machine learning</subject><subject>Microcavities</subject><subject>Optical device fabrication</subject><issn>2833-1052</issn><isbn>9798350345995</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j01Lw0AURUdBsNT8AxfZS9I3H68zbykx2kJKEey6vKSTOqJJmamC_96AurkXzuJyrhB3EkopgRZVU28X9WccT76on-sKLRGVCpQu5RTKKbwQGVlyGkEbJMJLMVNO60ICqmuRpfQGAFpJaa2ZCbcevnxMPn_wKRyHfOzzTejiGH0aBz6PMeW7FIZjvuHuNQw-bzzHYQI34qrn9-Szv56L3WP9Uq2KZvu0ru6bIkhJ5wI7CwotIxhAZ42R_eSsW6bWGtDLdmmRHeq-Bc-9Nr2RRLZDpgMfmJWei9vf3eC9359i-OD4vf8_q38ASRZL1Q</recordid><startdate>20230626</startdate><enddate>20230626</enddate><creator>Pal, Arghadeep</creator><creator>Ghosh, Alekhya</creator><creator>Zhang, Shuangyou</creator><creator>Bi, Toby</creator><creator>Del'Haye, Pascal</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230626</creationdate><title>Inverse Design of Microresonators Using Machine Learning</title><author>Pal, Arghadeep ; Ghosh, Alekhya ; Zhang, Shuangyou ; Bi, Toby ; Del'Haye, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-5c70257a5040587441f5793ba9b74036b675a853fb0eaf34f41997c5a9dadaa23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Dispersion</topic><topic>Europe</topic><topic>Geometry</topic><topic>Integrated optics</topic><topic>Machine learning</topic><topic>Microcavities</topic><topic>Optical device fabrication</topic><toplevel>online_resources</toplevel><creatorcontrib>Pal, Arghadeep</creatorcontrib><creatorcontrib>Ghosh, Alekhya</creatorcontrib><creatorcontrib>Zhang, Shuangyou</creatorcontrib><creatorcontrib>Bi, Toby</creatorcontrib><creatorcontrib>Del'Haye, Pascal</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pal, Arghadeep</au><au>Ghosh, Alekhya</au><au>Zhang, Shuangyou</au><au>Bi, Toby</au><au>Del'Haye, Pascal</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Inverse Design of Microresonators Using Machine Learning</atitle><btitle>2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)</btitle><stitle>CLEO/EUROPE-EQEC</stitle><date>2023-06-26</date><risdate>2023</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><eissn>2833-1052</eissn><eisbn>9798350345995</eisbn><abstract>The rapidly increasing number of ways to fabricate integrated microresonators have led to a demand for optimization of such structures based on the desired optical properties. Tweaking the geometry of photonic structures can alter their dispersion profiles, which can counter optical nonlinearities and influence the intracavity optical dynamics. The parameter D_{\text{int}} describes the integrated dispersion which can be written as,</abstract><pub>IEEE</pub><doi>10.1109/CLEO/Europe-EQEC57999.2023.10232825</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2833-1052 |
ispartof | 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), 2023, p.1-1 |
issn | 2833-1052 |
language | eng |
recordid | cdi_ieee_primary_10232825 |
source | IEEE Xplore All Conference Series |
subjects | Dispersion Europe Geometry Integrated optics Machine learning Microcavities Optical device fabrication |
title | Inverse Design of Microresonators Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Inverse%20Design%20of%20Microresonators%20Using%20Machine%20Learning&rft.btitle=2023%20Conference%20on%20Lasers%20and%20Electro-Optics%20Europe%20&%20European%20Quantum%20Electronics%20Conference%20(CLEO/Europe-EQEC)&rft.au=Pal,%20Arghadeep&rft.date=2023-06-26&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.eissn=2833-1052&rft_id=info:doi/10.1109/CLEO/Europe-EQEC57999.2023.10232825&rft.eisbn=9798350345995&rft_dat=%3Cieee_CHZPO%3E10232825%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-5c70257a5040587441f5793ba9b74036b675a853fb0eaf34f41997c5a9dadaa23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10232825&rfr_iscdi=true |