Loading…
Unveiling the Potential of Bismuth Oxy-Iodide (BiOI)-Based Photovoltaic Device for Indoor Light Harvesting
Indoor photovoltaics (IPVs) have piqued the interest of many because of their potential to power small and portable electronics and photonic devices. This work investigates one of the exemplary perovskite inspired materials (PIMs), bismuth oxy-iodide (BiOI). In order to explore the potential of BiOI...
Saved in:
Published in: | IEEE transactions on electron devices 2023-11, Vol.70 (11), p.5690-5695 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Indoor photovoltaics (IPVs) have piqued the interest of many because of their potential to power small and portable electronics and photonic devices. This work investigates one of the exemplary perovskite inspired materials (PIMs), bismuth oxy-iodide (BiOI). In order to explore the potential of BiOI in the indoor environment, the baseline model of BiOI device [indium tin oxide (ITO)/NiOx/BiOI/ZnO/Contact] is developed using the experimental results of a recent study with a power conversion efficiency (PCE) of 4%. The performance of the proposed device is fine-tuned by investigating the effect of: 1) absorber thickness and defect density and 2) valence band offset (VBO) between the hole transport layer (HTL) and absorber interface (NiOx/BiOI) along with the interface defect density. Furthermore, the series and shunt resistance of the device is optimized. Additionally, the performance of the optimized device is investigated under different WLED light intensities. Finally, after optimizing the device under WLED illumination, the best performance parameters achieved are {J} _{\text {sc}} : 1.83 mA/cm2, {V} _{\text {oc}} : 1.33 V, FF: 85.91%, and PCE: 40%. Moreover, the optimized device performance under different indoor light sources: WLED, halogen, and compact fluorescent lamps (CFLs), has been performed to estimate the performance under widely utilized lighting sources. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2023.3308919 |