Loading…

Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN

Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2023, Vol.31, p.3664-3674
Main Authors: Wang, Mingzhi, Guo, Jifeng, Wang, Yongjie, Yu, Ming, Guo, Jingtan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3
cites cdi_FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3
container_end_page 3674
container_issue
container_start_page 3664
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 31
creator Wang, Mingzhi
Guo, Jifeng
Wang, Yongjie
Yu, Ming
Guo, Jingtan
description Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.
doi_str_mv 10.1109/TNSRE.2023.3314516
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10247643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247643</ieee_id><doaj_id>oai_doaj_org_article_7f52079288154160a82f466dd1fe919d</doaj_id><sourcerecordid>2866482517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3</originalsourceid><addsrcrecordid>eNpdkctOHDEQRS2UiFf4AZRFS9mw6YnLby9hGAgSDwnI2vK0q4lH3ePB7l7k79PDoAixqlLp3FtVuoScAp0BUPvz-f7pcTFjlPEZ5yAkqD1yCFKamjKgX7Y9F7XgjB6Qo1JWlIJWUu-TA66VNVbaQ7K4G7sh9in4rjofh1j66mmDzZDHvrqMJeWAeWr8yzqVWKo7HP6kUF34gqFK6-oScXM9v_9Gvra-K3jyXo_J76vF8_xXfftwfTM_v60bwe1QN5Rry1qLVHkdqDVtQKCcMSptWAaxRGs5AmfKIAhouJeaYqN08EtuGfJjcrPzDcmv3CbH3ue_Lvno3gYpvzifh9h06HQrGZ22GQNSgKLesFYoFQK0aMGGyets57XJ6XXEMrg-lga7zq8xjcUxo4QCYy1M6I9P6CqNeT19uqWUMEyCnii2o5qcSsnY_j8QqNsG5t4Cc9vA3Htgk-j7ThQR8YOACa0E5_8ALcmM8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866482517</pqid></control><display><type>article</type><title>Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN</title><source>Alma/SFX Local Collection</source><creator>Wang, Mingzhi ; Guo, Jifeng ; Wang, Yongjie ; Yu, Ming ; Guo, Jingtan</creator><creatorcontrib>Wang, Mingzhi ; Guo, Jifeng ; Wang, Yongjie ; Yu, Ming ; Guo, Jingtan</creatorcontrib><description>Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2023.3314516</identifier><identifier>PMID: 37698959</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Autism ; autism spectrum disorders ; Biological neural networks ; Brain ; brain networks ; Classification ; Convolutional neural networks ; Deep learning ; Diagnosis ; Explosions ; Feature extraction ; Functional magnetic resonance imaging ; graph convolutional neural network ; Graph neural networks ; Graph theory ; Machine learning ; Measurement ; Medical diagnosis ; Medical imaging ; multimodal ; Neural networks ; Neuroimaging ; Symmetric matrices</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2023, Vol.31, p.3664-3674</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3</citedby><cites>FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3</cites><orcidid>0000-0002-1456-8428 ; 0009-0007-6616-5093 ; 0000-0002-3453-6474 ; 0000-0002-8692-6255 ; 0009-0001-5983-6430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Mingzhi</creatorcontrib><creatorcontrib>Guo, Jifeng</creatorcontrib><creatorcontrib>Wang, Yongjie</creatorcontrib><creatorcontrib>Yu, Ming</creatorcontrib><creatorcontrib>Guo, Jingtan</creatorcontrib><title>Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><description>Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.</description><subject>Artificial neural networks</subject><subject>Autism</subject><subject>autism spectrum disorders</subject><subject>Biological neural networks</subject><subject>Brain</subject><subject>brain networks</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Explosions</subject><subject>Feature extraction</subject><subject>Functional magnetic resonance imaging</subject><subject>graph convolutional neural network</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>multimodal</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Symmetric matrices</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpdkctOHDEQRS2UiFf4AZRFS9mw6YnLby9hGAgSDwnI2vK0q4lH3ePB7l7k79PDoAixqlLp3FtVuoScAp0BUPvz-f7pcTFjlPEZ5yAkqD1yCFKamjKgX7Y9F7XgjB6Qo1JWlIJWUu-TA66VNVbaQ7K4G7sh9in4rjofh1j66mmDzZDHvrqMJeWAeWr8yzqVWKo7HP6kUF34gqFK6-oScXM9v_9Gvra-K3jyXo_J76vF8_xXfftwfTM_v60bwe1QN5Rry1qLVHkdqDVtQKCcMSptWAaxRGs5AmfKIAhouJeaYqN08EtuGfJjcrPzDcmv3CbH3ue_Lvno3gYpvzifh9h06HQrGZ22GQNSgKLesFYoFQK0aMGGyets57XJ6XXEMrg-lga7zq8xjcUxo4QCYy1M6I9P6CqNeT19uqWUMEyCnii2o5qcSsnY_j8QqNsG5t4Cc9vA3Htgk-j7ThQR8YOACa0E5_8ALcmM8g</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wang, Mingzhi</creator><creator>Guo, Jifeng</creator><creator>Wang, Yongjie</creator><creator>Yu, Ming</creator><creator>Guo, Jingtan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1456-8428</orcidid><orcidid>https://orcid.org/0009-0007-6616-5093</orcidid><orcidid>https://orcid.org/0000-0002-3453-6474</orcidid><orcidid>https://orcid.org/0000-0002-8692-6255</orcidid><orcidid>https://orcid.org/0009-0001-5983-6430</orcidid></search><sort><creationdate>2023</creationdate><title>Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN</title><author>Wang, Mingzhi ; Guo, Jifeng ; Wang, Yongjie ; Yu, Ming ; Guo, Jingtan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Autism</topic><topic>autism spectrum disorders</topic><topic>Biological neural networks</topic><topic>Brain</topic><topic>brain networks</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Explosions</topic><topic>Feature extraction</topic><topic>Functional magnetic resonance imaging</topic><topic>graph convolutional neural network</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>multimodal</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingzhi</creatorcontrib><creatorcontrib>Guo, Jifeng</creatorcontrib><creatorcontrib>Wang, Yongjie</creatorcontrib><creatorcontrib>Yu, Ming</creatorcontrib><creatorcontrib>Guo, Jingtan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingzhi</au><au>Guo, Jifeng</au><au>Wang, Yongjie</au><au>Yu, Ming</au><au>Guo, Jingtan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><date>2023</date><risdate>2023</risdate><volume>31</volume><spage>3664</spage><epage>3674</epage><pages>3664-3674</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37698959</pmid><doi>10.1109/TNSRE.2023.3314516</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1456-8428</orcidid><orcidid>https://orcid.org/0009-0007-6616-5093</orcidid><orcidid>https://orcid.org/0000-0002-3453-6474</orcidid><orcidid>https://orcid.org/0000-0002-8692-6255</orcidid><orcidid>https://orcid.org/0009-0001-5983-6430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2023, Vol.31, p.3664-3674
issn 1534-4320
1558-0210
language eng
recordid cdi_ieee_primary_10247643
source Alma/SFX Local Collection
subjects Artificial neural networks
Autism
autism spectrum disorders
Biological neural networks
Brain
brain networks
Classification
Convolutional neural networks
Deep learning
Diagnosis
Explosions
Feature extraction
Functional magnetic resonance imaging
graph convolutional neural network
Graph neural networks
Graph theory
Machine learning
Measurement
Medical diagnosis
Medical imaging
multimodal
Neural networks
Neuroimaging
Symmetric matrices
title Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Autism%20Spectrum%20Disorder%20Diagnosis%20Method%20Based%20on%20DeepGCN&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Wang,%20Mingzhi&rft.date=2023&rft.volume=31&rft.spage=3664&rft.epage=3674&rft.pages=3664-3674&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2023.3314516&rft_dat=%3Cproquest_ieee_%3E2866482517%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-c03792f9e06a7d098fde10322059dbd4be993e13268e141c3a570ec67dab392e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2866482517&rft_id=info:pmid/37698959&rft_ieee_id=10247643&rfr_iscdi=true